1 гигабит в секунду интернет. Как выбрать Ethernet кабель для максимальной скорости интернет-соединения

В прошлом году все крупные провайдеры вдруг начали вводить тарифы с умопомрачительной скоростью. Триста мегабит в секунду! Пятьсот! Гигабит! А потом потихонечку от них отказались. И сейчас у моего любимого Онлайма максимум 100 Мбит/с, у Билайна столько же (с одной оговоркой, о которой чуть ниже), и у все еще почему-то живого Акадо 150 Мбит/с, хотя последний может писать что угодно, верится все равно с трудом.

Почему провайдеры срезали скорость? На ум приходят разные варианты, от дороговизны инвестиций в сетевую инфраструктуру до последствий санкций. Но на самом деле все гораздо, гораздо проще. Получилось, как в известном анекдоте, который люблю рассказывать.

Леонида Ильича Брежнева спрашивают:

– Почему в магазинах нету мяса?

– Мы идем в коммунизм семимильными шагами, скотина за нами не поспевает.

Скотина – это уровень техники, которой мы привыкли пользоваться.

Дотащить гигабит до квартиры – задача недешевая, но абсолютно реальная. И скорость эту обеспечить можно. Но вот потом начинается нехорошее.

Для прокачки даже 500 Мбит/с нужен топовый роутер. Максимум годичной давности. А лучше совсем свеженький. Иначе перегреется и захлебнется. Таких роутеров у населения на руках очень мало. Таким старьем пользуемся, что дух захватывает. Работает же? Ну и пусть работает, чего менять. Даже гигабитные порты до сих пор не везде есть.

Для передачи данных с такой скоростью по воздуху нужна поддержка 802.11ac/ И роутером, и, что немаловажно, конечным устройством. Между тем, вплоть до настоящего времени официальные поставки ноутбуков с 802.11ac в Россию были запрещены из-за отсутствия сертификации Минсвязи. Так что только 802.11n и пиковые 450 Мбит/с, а на самом деле – порядка 300. И даже на немногочисленных устройствах, ввезенных “в серую”, пиковая скорость соединения редко превышала 866 Мбит/с.

И как все происходило на практике?

Человек с роутером., купленным пять лет назад, и зоопарком техники, не поддерживающим 802.11ac, подключает гигабитный тариф и с негодованием замечает, что скорость-то не та! Больше 300 мегабит не получается никак! Обманули, твари криворукие! Начинаются гневные послания в форумы, письма и звонки в техподдержку. Выяснить причины происходящего без визита мастера невозможно. Так что и их начинают гонять. Мастера говорят пользователям – покупайте новые роутеры, обновляйте технику. Это вызывает новую волну возмущений – ах вы твари, не только деньги дерете каждый месяц, так еще разводите на аппаратуру! Да я вас засужу!

В общем, месяца через три такого бедлама провайдеры поняли, что нервы дороже. И убрали высокоскоростные тарифы с сайтов. Большинству пользователей, на самом деле, и 100 мегабит девать некуда. И даже 50. Так что исчезновение тарифов никто особо не заметил.

Мне пишут, что небольшие провайдеры еще пытаются продавать скорость 400 и даже 500 Мбит/с, но то ли у них пользователи прокачанные, то ли техподдержка с титановыми нервами. МГТС держит в ассортименте тариф на 500 мегабит, однако им деваться некуда, они с таким пафосом тащили “гигабит в каждый дом”, что отказаться от него невозможно. Билайн продает 365 мегабит на самом дорогом тарифе, но только в комплекте со своим роутером (кстати, очень прикольным – первая реализация 802.11ac на чипсете Mediatek). В любом случае, боюсь, еще пару-тройку лет нам возвращение на гигабитный уровень в массовом сегменте не светит.

Гигабитный интернет дома - и что с ним делать? Тестируем сверхскоростную сеть и ищем слабые ее места

Интернет дорогой, скорость маленькая - такие жалобы, вероятно, будут появляться всегда. Оценив оба аспекта, можно возразить: цены в Беларуси на доступ в сеть с учетом всех особенностей вполне приемлемые. Ну а скорости?.. Кому-то хватит мегабита, другому и 100 окажется мало. Все зависит от потребностей, да и современный контент нельзя назвать «легким», а его поставщики не слишком заботятся о «ширине» канала. В качестве эксперимента мы попросили интернет-оператора «Атлант Телеком» предоставить домашний гигабитный интернет - чтобы понять, нужен ли белорусу пресловутый 1 Гбит/сек.

Какую скорость соединения считать комфортной? В некоторых странах «социальным» минимумом считается 5-мегабитный интернет. Лидерство же долгое время удерживает Южная Корея с показателем 28,6 Мбит/с, средний глобальный показатель - 7,2 Мбит/с. Для сравнения, в Беларуси, согласно отчету компании Akamai, средняя скорость составляет около 9,7 Мбит/с, и наша страна оказывается в пятом десятке мирового рейтинга, что является неплохим показателем.

Но что же такое мифический гигабитный интернет? Мифический для простого пользователя, который не знает, что такое дата-центр, интернет вещей, big data и так далее. То есть для 95% белорусов. В принципе, уже сегодня он может быть доступен белорусам, но операторы связи почему-то не предлагают таких тарифов, либо предложение ограничено. Хотя еще несколько лет назад как минимум один вариант .

Подключение

До момента подключения я долгое время пользовался тарифом с 50-мегабитным соединением (100 Мбит/с в пиринге). Плюсы и минусы такого подключения знакомы многим: торренты способны забрать весь выделенный канал, но IPTV и игры при этом особо не страдают - скорости достаточно для одновременной работы всего.

Собственно переход на (еще более) высокоскоростное соединение состоял в прокладке нового кабеля непосредственно от операторского оборудования, замене витой пары в самой квартире и маршрутизатора - и скорость выросла в 20 раз. Затем нас ждало несколько сюрпризов.

Первый преподнес популярный Speedtest. При попытке замерить скорость подключения операторское оборудование отправляло меня в «бан» (из-за особенностей алгоритмов работы Speedtest). Понадобилось некоторое время, чтобы решить проблему - провайдер перенастроил «железо».

Теперь, когда на табло «спидтеста» засветились какие-то невероятные значения, настало время второго сюрприза: оказывается, далеко не каждый сервер на территории Беларуси способен «поднять» тот самый гигабит. Что ж, испытаем иностранные…

Сервер отказался замерять скорость - то ли «лег», то ли отправил в «бан»

Приведены только некоторые результаты измерений, а сервис «Яндекс» не захотел разгоняться

Некоторые удаленные хосты болезненно относились к нагрузке, блокируя доступ, но тем не менее скорость варьировалась от 450-550 Мбит/с на США (Купертино) до 930 Мбит/с в российском направлении, а Европа - Германия, Франция, Польша - оказалась примерно посередине.

Синтетические тесты завершены, нужно попробовать что-то приближенное к реальности. Ищем файлы в сети p2p, а затем запускаем Steam. В первом случае наиболее популярный файл позволил приблизиться к отметке в 41 МБ в секунду. Это не предел, но результат показательный - до максимума не дотягивает.

В сервисе Valve была выбрана игра объемом около 30 ГБ. Жмем «Установить», однако скорость выше 330 Мбит/с (41 МБ в секунду) не поднимается. Что это там шуршит под столом? Вот и то самое узкое место - жесткий диск, который исчерпал свои возможности. Выбираем в настройках SSD, и скорость поднимает до 64 мегабайт в секунду (около 512 Мбит/с).

Интернет есть, скорости нет

Какие выводы можно сделать? В зоне ответственности оператора все в порядке - гигабит подведен к маршрутизатору, а вот дальше начинаются «затыки». Основные причины пониженных скоростей очевидны: жесткий диск, неспособный обеспечить запись данных (бюджетный SSD также может не справиться с задачей), общая производительность компьютера, недостаточная скорость отдачи файлов источником (она может быть ограничена удаленной стороной программно).

Если пользователь обладает своим маршрутизатором, не исключено, что и это устройство окажется слабым звеном - речь идет о его процессоре и портах. Кроме того, в гигабитном устройстве Ethernet-порты вполне могут оказаться 100-мегабитными. Ну и банальная, казалось бы, причина - провода. Старая или дешевая витая пара, которая лежит во многих домах под и над плинтусами, проложена 4-жильная, а она, сколько в бубен ни бей, гигабит не потянет. С беспроводными соединениями все еще сложнее.

«Как это бывает? Ты покупаешь роутер, на котором написано „гигабит“, однако это не означает, что такая скорость будет всегда и везде. Обычно речь идет о скорости между LAN-портами, а вот между LAN- и WAN-портами ее может не быть. Поэтому у операторов есть рекомендуемые и протестированные модели с гарантированными показателями.

В беспроводном соединении еще больше маркетинга. Простой пример: надпись „300 Мбит/с“ или „1100 Мбит/с“ для Wi-Fi», - приводит пример начальник управления по фиксированной связи velcom Олег Гаврилов. В кабеле реализована дуплексная связь с одинаковыми показателями в каждом направлении.

Wi-Fi работает иначе, и 1100 Мбит/с означает, что скорость будет поделена примерно поровну. Кроме того, при скоростях больше 300 Мбит/с указываются параметры для двух диапазонов, которые суммируются. «А честные производители рядом с показателем скорости еще помечают, что данные получены в лабораторных условиях, где нет ни одной помехи», - добавил Олег.

Что еще влияет на скорость передачи данных? LAN-порты практически не обрабатывают информацию (точнее, процессор задействован минимально), а WAN оказывается куда более требовательным к производительности устройства - маршрутизатора. Соответственно, встает вопрос цены - чем мощнее процессор, тем она выше даже при остальных «заурядных» характеристиках.

«Далее - оконечное устройство: ноутбук, компьютер, телевизор, приставка. 2017 год на дворе, и гигабитные сетевые карты имеются во всех более-менее современных ПК. С остальными устройствами есть нюансы, особенно если в том же лэптопе установлен „бережливый“ мобильный процессор».

Многое, если не все, зависит от того, чем занят пользователь в сети. При серфинге утилизировать даже часть тех же 100 мегабит будет нереально - достаточно 5. Если смотрит видео, качает файлы, играет в онлайн-игры, то 50 Мбит/с хватит с лихвой. Но здесь речь уже идет не только о скорости передачи данных, но и о возможностях того же компьютера и кодеков: «Хочешь посмотреть 4K через интернет, а оно не идет или переключается на Full HD? Оказывается, что абонентское устройство попросту не тянет такой контент». Практика показала, что YouTube отдает 4K-контент без задержек (на тарифных 50 мегабитах нередко приходилось ждать загрузки). То же и с 8K, но с ним не справляется уже компьютер, показывая слайд-шоу.

С технической точки зрения, для потоковой передачи 4K-контента будет достаточно канала в 50 Мбит/с - при корректно построенных маршрутах. Сегодня в домашних хозяйствах, как правило, существует единственный потребитель видео сверхвысокой четкости - телевизор. Да и тех единицы. Ну и мониторы, которых, вероятно, больше, но преимущества 4K-фильмов, которые днем с огнем не сыщешь, на небольшой диагонали теряются. Однако со временем потребность в них сформируется.

Загрузка - 5%

Если исходить из моделей использования интернета, то даже при подключении гигабита паттерн поведения пользователя практически не изменится: можно побаловаться с тестами, загрузить пару игр, фильмов, а потом вернуться к привычному укладу («качков» и организаторов «домашних сетей» в расчет не берем).

С нами согласен и Олег Гаврилов: «Сейчас уже не модно качать „про запас“. Все можно посмотреть в онлайне».

Объективно так и есть, но даже без него потребление интернета в моем случае не выросло. Конечно, в первые дни трафик показал новые рекорды - за время пользования гигабитным каналом я скачал всего на 48 ГБ больше, чем обычно. И то за счет усиленных тестов. Затем потребление трафика постепенно упало до прежних значений.

Сегодня крупные белорусские операторы, предоставляющие доступ в интернет, все активнее смотрят в сторону технологии GPON (в отличие от Ethernet, это означает «оптика в квартиру», а не «оптика в дом»). Она обладает бóльшими возможностями и, среди прочего, не требует регулярной замены пассивной инфраструктуры при повышении скоростей.

Логично предположить, что с распространением в Беларуси 4К и виртуального контента вырастет и потребность в скоростях. Но пока белорусам придется подождать.

Я не очень торопился перевести свою домашнюю сеть со скорости 100 Мбит/с на 1 Гбит/с, что для меня довольно странно, поскольку я передаю по сети большое количество файлов. Однако когда я трачу деньги на апгрейд компьютера или инфраструктуры, я считаю, что должен сразу же получить прирост производительности в приложениях и играх, которые я запускаю. Многие пользователи любят потешить себя новой видеокартой, центральным процессором и каким-нибудь гаджетом. Однако по каким-то причинам сетевое оборудование не привлекает такого энтузиазма. Действительно, сложно вложить заработанные деньги в сетевую инфраструктуру вместо очередного технологического подарка на день рождения.

Однако требования по пропускной способности у меня очень высоки, и в один момент я понял, что инфраструктуры на 100 Мбит/с уже не хватает. У всех моих домашних компьютеров уже установлены интегрированные адаптеры на 1 Гбит/с (на материнских платах), поэтому я решил взять прайс-лист ближайшей компьютерной фирмы и посмотреть, что мне потребуется для перевода всей сетевой инфраструктуры на 1 Гбит/с.

Нет, домашняя гигабитная сеть вовсе не такая сложная.

Я купил и установил всё оборудование. Я помню, что раньше на копирование большого файла по 100-Мбит/с сети уходило около полутора минут. После апгрейда на 1 Гбит/с тот же файл стал копироваться за 40 секунд. Прирост производительности приятно порадовал, но всё же я не получил десятикратного превосходства, которое можно было ожидать из сравнения пропускной способности 100 Мбит/с и 1 Гбит/с старой и новой сетей.

В чём причина?

Для гигабитной сети все её части должны поддерживать 1 Гбит/с. Например, если у вас установлены гигабитные сетевые карты и соответствующие кабели, но концентратор/коммутатор поддерживает всего 100 Мбит/с, то и вся сеть будет работать на 100 Мбит/с.

Первое требование - сетевой контроллер. Лучше всего, если каждый компьютер в сети будет оснащён гигабитным сетевым адаптером (отдельным или интегрированным на материнскую плату). Это требование удовлетворить проще всего, поскольку большинство производителей материнских плат пару последних лет интегрируют гигабитные сетевые контроллеры.

Второе требование - сетевая карта тоже должна поддерживать 1 Гбит/с. Есть распространённое заблуждение, что для гигабитных сетей требуется кабель категории 5e, но на самом деле даже старый кабель Cat 5 поддерживает 1 Гбит/с. Впрочем, кабели Cat 5e обладают лучшими характеристиками, поэтому они будут более оптимальным решением для гигабитных сетей, особенно если длина у кабелей будет приличная. Впрочем, кабели Cat 5e сегодня всё равно самые дешёвые, поскольку старый стандарт Cat 5 уже устарел. Новые и более дорогие кабели Cat 6 обладают ещё лучшими характеристиками для гигабитных сетей. Мы сравним производительность кабелей Cat 5e против Cat 6 чуть позже в нашей статье.

Третий и, наверное, самый дорогой компонент в гигабитной сети - это концентратор/коммутатор с поддержкой 1 Гбит/с. Конечно, лучше использовать коммутатор (возможно, в паре с маршрутизатором), поскольку концентратор или хаб - не самое интеллектуальное устройство, просто транслирующее все сетевые данные по всем доступным портам, что приводит к появлению большого числа коллизий и замедляет производительность сети. Если вам нужна высокая производительность, то без гигабитного коммутатора не обойтись, поскольку он перенаправляет сетевые данные только на нужный порт, что эффективно увеличивает скорость работы сети по с равнению с концентратором. Маршрутизатор обычно содержит встроенный коммутатор (с несколькими портами LAN), а также позволяет подключать вашу домашнюю сеть к Интернету. Большинство домашних пользователей понимают преимущества маршрутизатора, поэтому гигабитный маршрутизатор - вариант вполне привлекательный.

Насколько быстрым должен быть гигабит? Если вы слышите префикс "гига", то наверняка подразумеваете 1000 мегабайт, при этом гигабитная сеть должна обеспечивать 1000 мегабайт в секунду. Если вы так считаете, то вы не одиноки. Но, увы, в действительности всё иначе.

Что же такое гигабит? Это 1000 мегабит, а не 1000 мегабайт. В одном байте 8 битов, поэтому просто посчитаем: 1 000 000 000 битов разделить на 8 битов = 125 000 000 байтов. В мегабайте около миллиона байтов, поэтому гигабитная сеть должна обеспечивать теоретическую максимальную скорость передачи данных около 125 Мбайт/с.

Конечно, 125 Мбайт/с звучит не так впечатляюще, как гигабит, но подумайте: сеть с такой скоростью должна теоретически передавать гигабайт данных всего за восемь секунд. А 10-Гбайт архив должен передаваться всего за минуту и 20 секунд. Скорость невероятная: просто вспомните, сколько времени уходило на передачу гигабайта данных до того момента, как USB-брелоки стали такими быстрыми, как сегодня.

Ожидания были серьёзными, поэтому мы решили передать файл по гигабитной сети и насладиться скоростью близкой к 125 Мбайт/с. У нас нет какого-либо специализированного чудесного оборудования: простая домашняя сеть с некоторыми старыми, но приличными технологиями.

Копирование 4,3-Гбайт файла с одного домашнего компьютера на другой выполнялось со средней скоростью 35,8 Мбайт/с (мы проводили тест пять раз). Это всего лишь 30% от теоретического потолка гигабитной сети 125 Мбайт/с.

В чём же причины проблемы?

Подобрать компоненты для установки гигабитной сети довольно просто, но вот заставить сеть работать на максимальной скорости намного сложнее. Факторы, которые могут привести к замедлению сети, довольно многочисленны, но как мы обнаружили, всё упирается в то, насколько быстро жёсткие диски способны передавать данные на сетевой контроллер.

Первое ограничение, которое нужно учитывать - интерфейс гигабитного сетевого контроллера с системой. Если ваш контроллер подключён через старую шину PCI, то количество данных, которое она теоретически может передать, составляет 133 Мбайт/с. Для пропускной способности 125 Мбайт/с у Gigabit Ethernet этого кажется достаточным, но помните, что пропускная способность шины PCI распределяется по всей системе. Каждая дополнительная карта PCI и многие системные компоненты будут использовать ту же самую пропускную способность, что снижает ресурсы, доступные сетевой карте. У контроллеров с новым интерфейсом PCI Express (PCIe) таких проблем нет, поскольку каждая линия PCIe обеспечивает, как минимум 250 Мбайт/с пропускной способности, причём эксклюзивно для устройства.

Следующий важный фактор, который влияет на скорость сети - кабели. Многие специалисты указывают на то, что в случае прокладки сетевых кабелей рядом с кабелями питания, являющимися источниками помех, низкие скорости гарантированы. Большая длина кабелей тоже проблемная, поскольку медные кабели Cat 5e сертифицированы под максимальную длину 100 метров.

Некоторые специалисты рекомендуют прокладывать кабели нового стандарта Cat 6 вместо Cat 5e. Часто такие рекомендации оправдать сложно, но мы попытаемся протестировать влияние категории кабеля на маленькую гигабитную домашнюю сеть.

Не будем забывать и про операционную систему. Конечно, в гигабитном окружении эта система используется довольно редко, но следует упомянуть, что Windows 98 SE (и старые операционные системы) не смогут использовать преимущества гигабитного Ethernet, поскольку стек TCP/IP этой операционной системы едва умеет нагружать 100-Мбит/с соединение в полной мере. Windows 2000 и более свежие версии Windows уже подойдут, хотя в старых операционных системах придётся выполнить некоторые настройки, чтобы они использовали сеть по максимуму. Мы будем использовать 32-битную ОС Windows Vista для наших тестов, и хотя у Vista в каких-то задачах репутация не самая лучшая, эта система поддерживает гигабитную сеть с самого начала.

Теперь перейдём к жёстким дискам. Даже старого интерфейса IDE со спецификацией ATA/133 должно быть достаточно для поддержки теоретической скорости передачи файлов 133 Мбайт/с, а более новая спецификация SATA соответствует всем требованиям, поскольку она обеспечивает, как минимум, пропускную способность 1,5 Гбит/с (150 Мбайт/с). Однако если кабели и контроллеры могут справляться с передачей данных на такой скорости, сами жёсткие диски - нет.

Возьмём для примера типичный современный жёсткий диск на 500 Гбайт, который должен обеспечивать постоянную пропускную способность около 65 Мбайт/с. В начале пластин (внешние дорожки) скорость может быть выше, однако по мере перехода на внутренние дорожки пропускная способность падает. Данные на внутренних дорожках считываются медленнее, на скорости около 45 Мбайт/с.

Нам казалось, что мы рассмотрели все возможные "узкие места". Что оставалось делать? Нужно было провести несколько тестов и посмотреть, сможем ли мы добраться по производительности сети до теоретического предела 125 Мбайт/с.

Тестовая конфигурация

Тестовые системы Серверная система Клиентская система
CPU Intel Core 2 Duo E6750 (Conroe), 2,66 ГГц, FSB-1333, кэш 4 Мбайт Intel Core 2 Quad Q6600 (Kentsfield), 2,7 ГГц, FSB-1200, кэш 8 Мбайт
Материнская плата ASUS P5K, Intel P35, BIOS 0902 MSI P7N SLI Platinum, Nvidia nForce 750i, BIOS A2
Сеть Встроенный контроллер Abit Gigabit LAN Встроенный контроллер nForce 750i Gigabit Ethernet
Память Wintec Ampo PC2-6400, 2x 2048 Мбайт, DDR2-667, CL 5-5-5-15 на 1,8 В A-Data EXTREME DDR2 800+, 2x 2048 Мбайт, DDR2-800, CL 5-5-5-18 на 1,8 В
Видеокарты ASUS GeForce GTS 250 Dark Knight, 1 Гбайт GDDR3-2200, 738 МГц GPU, 1836 МГц блок шейдеров MSI GTX260 Lightning, 1792 Мбайт GDDR3-1998, 590 МГц GPU, 1296 МГц блок шейдеров
Жёсткий диск 1 Seagate Barracuda ST3320620AS, 320 Гбайт, 7200 об/мин, кэш 16 Мбайт, SATA 300
Жёсткий диск 2 2x Hitachi Deskstar 0A-38016 в RAID 1, 7200 об/мин, кэш 16 Мбайт, SATA 300 Western Digital Caviar WD50 00AAJS-00YFA, 500 Гбайт, 7200 об/мин, кэш 8 Мбайт, SATA 300
Блок питания Aerocool Zerodba 620w, 620 Вт, ATX12V 2.02 Ultra HE1000X, ATX 2.2, 1000 Вт
Сетевой коммутатор D-Link DGS-1008D, 8-Port 10/100/1000 Unmanaged Gigabit Desktop Switch
ПО и драйверы
ОС Microsoft Windows Vista Ultimate 32-bit 6.0.6001, SP1
Версия DirectX DirectX 10
Графический драйвер Nvidia GeForce 185.85

Тесты и настройки

Тесты и нстройки
Nodesoft Diskbench Version: 2.5.0.5, file Copy, Creation, Read, and Batch Benchmark
SiSoftware Sandra 2009 SP3 Version 2009.4.15.92, CPU Test = CPU Arithmetic / Multimedia, Memory Test = Bandwidth Benchmark

Перед тем, как мы перейдём к любым тестам, мы решили протестировать жёсткие диски без использования сети, чтобы посмотреть, какую пропускную способность мы можем ожидать в идеальном сценарии.

В нашей домашней гигабитной сети работают два ПК. Первый, который мы будем называть сервером, оснащён двумя дисковыми подсистемами. Основной жёсткий диск - 320-Гбайт Seagate Barracuda ST3320620AS возрастом пару лет. Сервер работает в качестве сетевого хранилища NAS с RAID-массивом, состоящим из двух 1-Тбайт жёстких дисков Hitachi Deskstar 0A-38016, которые зеркалированы для избыточности.

Второй ПК в сети мы назвали клиентом, у него два жёстких диска: оба 500-Гбайт Western Digital Caviar 00AAJS-00YFA возрастом около полугода.

Сначала мы протестировали скорость системных жёстких дисков сервера и клиента, чтобы посмотреть, какую производительность мы можем от них ожидать. Мы использовали тест жёсткого диска в пакете SiSoftware Sandra 2009.

Наши мечты о достижении гигабитной скорости передачи файлов сразу же рассеялись. Оба из одиночных жёстких дисков достигли максимальной скорости чтения около 75 Мбайт/с в идеальных условиях. Поскольку данный тест проводится в реальных условиях, а накопители заполнены на 60%, то мы можем ожидать скорости чтения ближе к индексу 65 Мбайт/с, который мы получили у обоих жёстких дисков.

Но давайте посмотрим на производительность RAID 1 - самое хорошее у данного массива в том, что аппаратный RAID-контроллер может увеличивать производительность чтения, получая данные с обоих жёстких дисков одновременно, аналогично массивам RAID 0; но данный эффект получается (насколько мы знаем) только с аппаратными RAID-контроллерами, но не с программными решениями RAID. В наших тестах массив RAID обеспечил намного более высокую производительность чтения, чем один жёсткий диск, поэтому велики шансы того, что мы получим высокую скорость передачи файлов по сети с массива RAID 1. Массив RAID обеспечил впечатляющую пиковую пропускную способность 108 Мбайт/с, но в реальности производительность должна быть близка к индексу 88 Мбайт/с, поскольку массив заполнен на 55%.

Поэтому мы должны получить около 88 Мбайт/с по гигабитной сети, не так ли? Это не так близко к потолку гигабитной сети 125 Мбайт/с, но намного быстрое 100-Мбит/с сетей, у которых потолок составляет 12,5 Мбайт/с, так что получить 88 Мбайт/с на практике было бы совсем неплохо.

Но не всё так просто. То, что скорость чтения с жёстких дисков довольно высока, вовсе не означает, что они будут быстро записывать информацию в реальных условиях. Давайте проведём несколько тестов записи на диски до использования сети. Мы начнём с нашего сервера и скопируем 4,3-Гбайт образ со скоростного массива RAID на 320-Гбайт системный жёсткий диск и обратно. Затем мы скопируем файл с клиентского диска D: на его диск C:.

Как видим, копирование с быстрого массива RAID на диск C: дало среднюю скорость всего 41 Мбайт/с. А копирование с диска C: на массив RAID 1 привело к снижению до всего 25 Мбайт/с. Что происходит?

Именно так и случается в реальности: жёсткий диск C: выпущен чуть больше года назад, но он заполнен на 60%, вероятно, немного фрагментирован, так что по записи он рекордов не бьёт. Есть и другие факторы, а именно, насколько быстро работает система и память в целом. Массив RAID 1 составлен из относительного нового "железа", но из-за избыточности информацию нужно записывать на два жёстких диска одновременно, что снижает производительность. Хотя массив RAID 1 может дать высокую производительность чтения, скоростью записи придётся пожертвовать. Конечно, мы могли использовать массив RAID 0 с чередованием, который даёт высокую скорость записи и чтения, но если один жёсткий диск "умрёт", то вся информация будет испорчена. В целом, RAID 1 является более правильным вариантом, если для вас ценны данные, хранящиеся на NAS.

Впрочем, не всё потеряно. Новый 500-Гбайт накопитель Digital Caviar способен записывать наш файл со скоростью 70,3 Мбайт/с (средний результат по пяти тестовым прогонам), а также даёт максимальную скорость 73,2 Мбайт/с.

С учётом всего сказанного мы ожидали получить в реальных условиях максимальную скорость передачи по гигабитной сети 73 Мбайт/с с массива NAS RAID 1 на диск C: клиента. Мы также протестируем передачу файлов с клиентского диска C: на серверный диск C: чтобы узнать, можем ли мы реалистично ожидать 40 Мбайт/с в этом направлении.

Начнём с первого теста, в рамках которого мы отсылали файл с клиентского диска C: на диск C: сервера.

Как видим, результаты соответствуют нашим ожиданиям. Гигабитная сеть, способная в теории дать 125 Мбайт/с, отсылает данные с клиентского диска C: с максимально возможной скоростью, вероятно, в районе 65 Мбайт/с. Но, как мы показали выше, серверный диск C: может записывать только со скоростью около 40 Мбайт/с.

Теперь давайте скопируем файл со скоростного RAID-массива сервера на диск C: клиентского компьютера.

Всё оказалось так, как мы и предполагали. Из наших тестов мы знаем, что диск C: клиентского компьютера способен записывать данные со скоростью около 70 Мбайт/с, и производительность гигабитной сети оказалась очень близка к данной скорости.

К сожалению, полученные нами результаты и близко не подходят к теоретической максимальной пропускной способности 125 Мбайт/с. Можем ли мы протестировать предельную скорость работы сети? Конечно, но не в реалистичном сценарии. Мы попытаемся передать информацию по сети из памяти в память, чтобы обойти любые ограничения жёстких дисков по пропускной способности.

Для этого мы создадим 1-Гбайт RAM-диск на серверном и клиентском ПК, после чего передадим 1-Гбайт файл между этими дисками по сети. Поскольку даже медленная память DDR2 способна передавать данные со скоростью более 3000 Мбайт/с, то ограничивающим фактором окажется сетевая пропускная способность.

Мы получили максимальную скорость работы нашей гигабитной сети 111,4 Мбайт/с, что очень близко к теоретическому пределу 125 Мбайт/с. Прекрасный результат, жаловаться на него не приходится, поскольку реальная пропускная способность всё равно не будет достигать теоретического максимума из-за передачи дополнительной информации, ошибок, повторных передач и т.д.

Вывод будет следующим: сегодня производительность передачи информации по гигабитной сети упирается в жёсткие диски, то есть скорость передачи будет ограничена самым медленным винчестером, участвующем в процессе. Ответив на самый важный вопрос, мы можем переходить к тестам скорости в зависимости от конфигурации кабелей, чтобы наша статья была полной. Сможет ли оптимизация прокладки кабелей дать скорость сети, ещё более близкую к теоретическому пределу?

Поскольку производительность в наших тестах была близка к предполагаемой, мы вряд ли увидим какие-либо улучшения при изменении конфигурации кабелей. Но мы всё равно хотели провести тесты, чтобы приблизиться к теоретическому ограничению по скорости.

Мы провели четыре теста.

Тест 1: по умолчанию.

В данном тесте мы использовали два кабеля длиной около 8 метров, каждый из которых был подключён к компьютеру на одном конце и к гигабитному коммутатору на другом. Мы оставили кабели там, где их прокладывали, то есть по соседству с кабелями питания и розетками.

На этот раз мы использовали те же 8-м кабели, что и в первом тесте, но перенесли сетевой кабель как можно дальше от кабелей питания и удлинителей.

В данном тесте мы сняли один из 8-м кабелей и заменили его метровым кабелем Cat 5e.

В последнем тесте мы заменили 8-м кабели Cat 5e на 8-м кабели Cat 6.

В общем, наше тестирование разных конфигураций кабелей не показала серьёзной разницы, но выводы сделать можно.

Тест 2: снижаем помехи со стороны кабелей питания.

В небольших сетях, таких как наша домашняя сеть, тесты показывают, что вам можно не беспокоиться о прокладке кабелей LAN рядом с кабелями электропроводки, розетками и удлинителями. Конечно, наводки при этом будут выше, но серьёзного эффекта на скорость сети это не даст. Впрочем, с учётом всего сказанного, лучше избегать прокладки рядом с кабелями питания, да и следует помнить, что в вашей сети ситуация может оказаться иной.

Тест 3: уменьшаем длину кабелей.

Это не совсем корректный тест, но мы пытались обнаружить разницу. Следует помнить, что замена восьмиметрового кабеля на метровый может привести к влиянию на результат просто разных кабелей, чем разницы в расстоянии. В любом случае, в большинстве тестов мы не видим значимой разницы за исключением аномального подъёма пропускной способности во время копирования с клиентского диска C: на серверный C:.

Тест 4: заменяем кабели Cat 5e на Cat 6.

Опять же, мы не обнаружили существенной разницы. Поскольку длина кабелей составляет около 8 метров, большие по длине кабели могут дать большую разницу. Но если у вас длина не максимальная, то кабели Cat 5e будут вполне нормально работать в домашней гигабитной сети с расстоянием между двумя компьютерами 16 метров.

Интересно заметить, что манипуляции с кабелями не дали никакого эффекта на передачу данных между RAM-дисками компьютеров. Вполне очевидно, что какой-то другой компонент в сети ограничивал производительность магической цифрой 111 Мбайт/с. Впрочем, подобный результат всё равно приемлем.

Дают ли гигабитные сети гигабитную скорость? Как оказывается, почти дают.

Однако в реальных условиях скорость сети будет серьёзно ограничиваться жёсткими дисками. В синтетическом сценарии память-память наша гигабитная сеть дала производительность, очень близкую к теоретическому пределу 125 Мбайт/с. Обычные же скорости в сети с учётом производительности жёстких дисков будут ограничиваться уровнем от 20 до 85 Мбайт/с, в зависимости от используемых винчестеров.

Мы также протестировали влияние кабелей питания, длины кабеля и перехода с Cat 5e на Cat 6. В нашей небольшой домашней сети ни один из упомянутых факторов не влиял существенно на производительность, хотя мы хотим отметить, что в более крупной и более сложной сети с большими длинами эти факторы могут влиять намного сильнее.

В общем, если вы передаёте в домашней сети большое количество файлов, то мы рекомендуем устанавливать гигабитную сеть. Переход с сети на 100 Мбит/с даст приятный прирост производительности, по крайней мере, вы получите двукратное увеличение скорости передачи файлов.

Gigabit Ethernet в домашней сети может дать больший прирост производительности, если вы будете считывать файлы с быстрого хранилища NAS, где используется аппаратный массив RAID. В нашей тестовой сети мы передавали 4,3-Гбайт файл всего за одну минуту. По соединению на 100 Мбит/с тот же самый файл копировался около шести минут.

Гигабитные сети становятся всё более доступными. Теперь осталось только дождаться, когда скорости жёстких дисков поднимутся до такого же уровня. А пока что мы рекомендуем создавать массивы, способные обойти ограничения современных технологий HDD. Тогда вы сможете выжать больше производительности из гигабитной сети.

Недавно я посетил интернет-форум, на котором люди обсуждали свои 1-гигабитные волоконные интернет-соединения. «Повезло им!» — подумал я. Но действительно ли в везении дело? Если вы заметили, что вместо 1 Гбит/с вы получаете порядка 80 Мбит/с, или даже меньше, проблема можем заключаться в неправильном Ethernet кабеле.

В этой статье мы расскажем, как правильно выбрать Ethernet кабель для максимальной скорости интернет-соединения.

WiFi против Ethernet

Давайте сразу выясним, что Ethernet кабель обеспечивает более высокие скорости интернет-соединений, чем Wi-Fi. Да, беспроводная сеть – это очень удобно, но, если вы хотите получить максимальную скорость интернета, тогда вам следует использовать Ethernet кабель.

Ethernet на помощь!

Естественно, если у вас есть проводная сеть и очень быстрый широкополосный интернет, вы не хотите использовать соединение 100 Мбит/с (Fast Ethernet) между вашим компьютером и модемом вашего провайдера. Это было бы глупо! Вам нужен гигабитный интернет.

Все, что вам нужно, это подключить все ваши домашние устройства с помощью недорогих Ethernet кабелей Cat 6, а также использовать дешевые гигабитные коммутаторы в качестве «узлов» для соединения ваших устройств.

Моя домашняя сеть выглядит следующим образом:

Довольно просто, не правда ли?

Оранжевая линия — кабель Ethernet Cat 6. Вы просто подключаете компьютеры, роутеры, ноутбуки с помощью этих кабелей, и все «просто работает».

Тем не менее, вам стоит обратить внимание, что некоторые ноутбуки поставляются с дешевыми встроенными адаптерами Fast Ethernet, которые предлагают скорость соединения не выше 100 Мбит/с. Если у вас произошла такая ситуация с компьютером, купите гигабитный USB-ethernet адаптер.

Но какие коммутаторы и Ethernet кабели следует купить?

Это тоже довольно легкий вопрос.

В качестве Ethernet коммутаторов вам нужен качественный «гигабитный Ethernet-коммутатор». Мы советуем приобрести 8-портовый D-Link Gigabit DGS-108, который прекрасно подходит для домашнего использования.

Этот коммутатор очень удобен в использовании: когда вы подключаете Ethernet кабель, и разъем мигает зеленым, тогда он работает на скорости 1 гигабит. Если индикатор оранжевый – скорость всего лишь 10 или 100 Мбит/с. Таким образом, вы можете определить, какой Ethernet адаптер используется в вашем компьютере, о чем мы уже говорили выше.

Что касается Ethernet кабелей, вам просто нужно убедиться, что вы используете Cat 6 (категории 6). Кабели Ethernet обычно имеют категорию, напечатанную на них, например:

Обратите внимание, что существуют и другие типы Ethernet кабелей, такие как Cat 5, Cat 5e, Cat 6a и т.д. Любой кабель, который имеет надпись Cat 6, является отличным вариантом для нашей ситуации (независимо от буквы в конце, если таковая имеется). Не следует покупать Ethernet кабели категории Cat 5, потому что они предназначены для работы в сетях менее 1 Гбит/с.

Кстати, разъемы на Ethernet кабелях не играют особую роль на качество и скорость сигнала. Четыре витые пары проводов внутри кабеля играют гораздо большее значение. Чем выше категория, тем быстрее кабель передаст данные. Вот почему вам следует использовать Cat 6 или выше. Cat 6 предназначен для гигабитного Ethernet!

Также вам не стоит переживать об экранировании, если вы покупаете готовый кабель. Просто убедитесь, что это Cat 6, и полный вперед!

Мы подготовили несколько советов и заметок об использовании Ethernet кабелей по всему дому:

  • Не разматывайте сетевой кабель;
  • Не зажимайте кабель в дверях;
  • Не сгибайте кабель под прямым углом; закругляйте его по углам.

Ethernet кабель Cat 6 немного прочнее, чем другие, потому он имеет пластиковый сердечник, который вмещает витые пары проводов. Но вы все равно не должны злоупотреблять прочностью кабеля. Чем больше вы будете сжимать кабель, тем больше будут сдвигаться провода внутри, и тем ниже будет скорость передачи данных.

Используя несколько простых советов, вы можете сделать свою домашнюю сеть максимально быстрой. 1 Гбит/с интернет-соединение не проблема, конечно, если ваш интернет-провайдер предлагает такой быстрый широкополосный доступ.