Валы и оси в промышленности: применение и виды. Валы и оси общие сведения и основы конструирования Элементы конструкции валов и осей

Для составления качественного технологического процесса изготовления детали необходимо тщательным образом изучить ее конструкцию и назначение в машине.

Технологическая конструкция детали представлена на рисунке.

Деталь представляет собой цилиндрическую ось. Наиболее высокие требования к точности формы и расположения, а также шероховатости предъявляются к поверхностям шеек оси, предназначенных для посадки подшипников. Так точность шеек под подшипники должны соответствовать 7 квалитету. Высокие требования к точности расположения этих шеек оси относительно друг друга вытекают из условий работы оси.

Все шейки оси представляют собой поверхности вращения относительно высокой точности. Это определяет целесообразность применения токарных операций только для их предварительной обработки, а окончательную обработку с целью обеспечения заданной точности размеров и шероховатости поверхностей следует выполнять шлифованием. Для обеспечения высоких требований к точности расположения шеек оси их окончательную обработку необходимо осуществить за один установ или, в крайнем случае на одних и тех же базах.

Оси такой конструкции применяют в машиностроении достаточно широко.

Оси предназначены для передачи крутящих моментов и монтажа на них различных деталей и механизмов. Они представляют собой сочетание гладких посадочных и непосадочных, а также переходных поверхностей.

Технические требования, предъявляемые к осям, характеризуются следующими данными. Диаметральные размеры посадочных шеек выполняют по IТ7, IТ6, других шеек по IТ10, IТ11.

Конструкция оси, ее размеры и жесткость, технические требования, программа выпуска - основные факторы, определяющие технологию изготовления и применяемое оборудование.

Деталь представляет собой тело вращения и состоит из простых конструктивных элементов, представленных в виде тел вращения круглого сечения различного диаметра и длины. На оси имеется резьба. Длина оси составляет 112 мм, максимальный диаметр равен 75 мм, а минимальный - 20 мм.

Исходя из конструктивного назначения детали в машине, все поверхности этой детали можно разбить на 2 группы:

основные или рабочие поверхности;

свободные или нерабочие поверхности.

Почти все поверхности оси относятся к основным, потому что сопрягаются с соответствующими поверхностями других деталей машин или же непосредственно участвуют в рабочем процессе машины. Это объясняет достаточно высокие требования к точности обработки детали и степени шероховатости, указанные на чертеже.

Можно отметить, что конструкция детали полностью отвечает ее служебному назначению. Но принцип технологичности конструкции состоит не только в удовлетворении эксплуатационных требований, но также и требований наиболее рационального и экономичного изготовления изделия.

Деталь имеет поверхности легкодоступные для обработки; достаточная жесткость детали позволяет обрабатывать ее на станках с наиболее производительными режимами резания. Данная деталь является технологичной, так как содержит простые профили поверхностей, ее обработка не требует специально разработанных приспособлений и станков. Поверхности оси обрабатываются на токарном, сверлильном и шлифовальном станках. Необходимая точность размеров и шероховатость поверхностей достигаются относительно небольшим набором несложных операций, а также набором стандартных резцов и кругов для шлифования.

Изготовление детали отличается трудоемкостью, что связано, прежде всего, с обеспечением технических условий работы детали, необходимой точностью размеров, шероховатостью рабочих поверхностей.

Итак, деталь является технологичной по конструкции и способам обработки.

Технологический чертеж детали <<Ось>>.

Деталь, на которую насажены вращающиеся чести машины, реально осуществляющая геометрическую ось вращения этих частей, называется осью или валом.

Ось предназначена лишь для поддержания вращающихся деталей. Оси могут быть неподвижными относительно машины, либо вращаться вместе с насаженными на них деталями. В любом случае ось воспринимает лишь изгибающие нагрузки от усилий, действующих на вращающиеся части машин.

Вал, в отличие от оси, не только поддерживает вращающиеся детали, но и передает крутящий момент. Вследствие этого валы оказываются нагруженными не только изгибающими усилиями, но и крутящим моментом.

Крутящий момент связан с передаваемой мощностью и числом оборотов вала соотношением

где N - мощность, кВт;

n - число оборотов вала, об/мин.

По форме геометрической оси вала различают: прямые валы и коленчатые валы. Коленчатые валы обычно считают не типовой, а специальной конструкцией. Прямые валы могут быть гладкими, если имеют постоянный диаметр по всей длине, или ступенчатыми.

Особую группу составляют валы с изменяющейся формой геометрической оси - гибкие валы.

Опорные участки осей и валов называются цапфами. В зависимости от системы нагружения, направление опорных реакций может быть радиальным и осевым.


Цапфы, воспринимающие опорные реакции радиального направления, называются шипами, если они являются концевыми, или шейками, если они расположены на удалении от конца вала.

Цапфы, воспринимающие осевые опорные реакции, называются пятами. Одна и та же конструктивная задача может быть решена как с помощью вала, так и оси.

а - барабан насажен на неподвижную ось, зубчатое колесо для приведения вала во вращение закреплено на барабане; б - барабан закреплен на вращающейся оси; в - барабан закреплен на валу, зубчатое колесо тоже, вращающий момент с зубчатого колеса на барабан передается валом.

В случае "а " ось испытывает односторонний изгиб, в случае "б " нагрузка на ось - знакопеременная, поэтому диаметр оси должен быть больше. Но зато в варианте "б " легче доступ к подшипникам. Достоинством варианта "в " является свободный доступ к узлам трения, насадка зубчатого колеса на вал, а не на барабан упрощает конструкцию.

Диаметры посадочных мест осей и валов выбираются стандартные, что обеспечивает возможность использования стандартного измерительного инструмента и стандартных подшипников. Свободные размеры выбираются из ряда предпочтительных чисел.

Переход на ступенчатом валу с одного диаметра на другой осуществляется не резко, а с помощью галтели с целью уменьшения усталостных напряжений, возникающих при знакопеременной нагрузке.

Существенное снижение массы вала или оси при незначительном уменьшении момента сопротивления может быть достигнуто при использовании полого вала. Оси и валы - ответственные детали, обязательно подлежащие расчету на прочность. Ось считают на изгиб. Вал, помимо изгиба, проверяют на критическое число оборотов. В некоторых случаях помимо прочности требуется проверка вала на жесткость.

Поскольку валы и оси являются достаточно нагруженными элементами конструкции, для их изготовления используют материалы повышенной прочности. Так, если машина изготовлена из черных металлов, вал или ось изготавливают из стали 45, в нержавеющих стальных конструкциях - из 3Х13 и т.д. Следует заметить, что указанные марки сталей способны подвергаться закалке и другим методам термообработки.

Особую конструкцию представляют собою гибкие валы, применяемые для передачи движения между деталями, если в процессе работы изменяются относительное расположение их осей вращения. Пример : использование вибратора в бетонных работах.

Распространенной конструкцией является гибкий вал, состоящий из ряда последовательно навитых друг на друга слоев стальной проволоки. Первый от центра слой навивается на центральную проволоку - сердечник, который может быть затем извлечен из вала, либо оставлен внутри его. Конструктивно гибкий вал похож на многозаходную, многослойную винтовую пружину кручения с плотно прилегающими друг к другу витками и слоями. Смежные слои имеют противоположные направления навивки. Направление вращения вала должно быть таким, чтобы пружина, образующая внешний слой, закручивалась, а не раскручивалась.

Вращающиеся детали машин устанавливают на валах или осях, обеспечивающих постоянное положение оси вращения этих деталей.

Валы - детали, предназначенные для передачи крутящего момента вдоль своей оси и для поддержания вращающихся деталей машин.

Валы по назначению можно разделить на валы передач , несущие детали передач – зубчатые колеса, шкивы, звездочки, муфты (рис. ,а и б), и на коренные валы машин и другие специальные валы, несущие кроме деталей передач рабочие органы машин двигателей или орудий – колеса или диски турбин, кривошипы, зажимные патроны и т. д. (рис. ,в и д )

По форме геометрической оси валы разделяют на прямые и коленчатые.

Оси – детали, предназначенные для поддержания вращающихся деталей и не передающие полезного крутящего момента.

Рис. 12.1 Основные типы валов и осей:

а – гладкий трансмиссионный вал; б – ступенчатый вал;

в – шпиндель станка; г - вал паровой турбины; д – коленчатый вал;

е – ось вращающегося вагонная; ж – ось невращающаяся вагонетки.

Опорные части валов и осей называют цапфами . Промежуточные цапфы называют шейками , концевые – шипами .

Прямые валы по форме разделяют на валы постоянного диаметра (валы трансмиссионные и судовые многопролетные, рис. ,а, а также валы, передающие только крутящий момент); валы ступенчатые (большинство валов, рис. б-г ); валы с фланцами для соединения по длине, а также валы с нарезанными шестернями или червяками. По форме сечения валы разделяются на гладкие, шлицевые, имеющие на некоторой длине профиль зубчатого (шлицевого) соединения, и профильные.

Форма вала по длине определяется распределением нагрузок по длине.

Эпюры моментов по длине валов, как правило, существенно неравномерны. Крутящий момент обычно передается не на всей длине вала. Эпюры изгибающих моментов обычно сходят к нулю к концевым опорам или к концам валов. Поэтому по условию прочности допустимо и целесообразно конструировать валы переменного сечения приближающимися к телам равного сопротивления. Практически валы выполняю ступенчатыми. Эта форма удобна в изготовлении и сборке; уступы валов могут воспринимать большие осевые силы.

Перепад диаметров ступеней определяется: стандартными диаметрами посадочных поверхностей под ступицы и подшипники, достаточной опорной поверхностью для восприятия осевых сил при заданных радиусах закругления кромок и размерах фасок и, наконец, условиями сборок.

Цапфы (шейки) валов, работающие в подшипниках скольжения, выполняют: а) цилиндрическими; б) коническими; в) сферическими (рис.). Основное применение имеют цилиндрические цапфы. Концевые цапфы для облегчения сборки и фиксации вала в осевом направлении обычно делают несколько меньшего диаметра, чем соседний участок вала (рис.).

Цапфы валов для подшипников качения (рис.) характеризуются меньшей длиной, чем цапфы для подшипников скольжения.

Цапфы для подшипников качения нередко выполняют с резьбой или другими средствами для закрепления колец.

Посадочные поверхности под ступицы деталей, насаживаемых на вал, выполняют цилиндрическими или коническими. Основное применение имеют цилиндрические поверхности как более простые в изготовлении.

Рис. 12.4 Конструктивные средства повышения выносливости

валов в местах посадок: а – утолщение подступичной чвсти вала;

б – закругление кромок ступицы; в – утонение ступицы; г – разгрузочные

канавки; д – втулки или заливки в ступице из материала с низким модулем

упругости.

Выносливость валов определяется относительно малыми объемами металла в зонах значительной концентрации напряжений. Поэтому особо эффективны специальные конструкторские и технологические мероприятия по повышению выносливости валов.

Конструктивные средства повышения выносливости валов в местах посадок путем уменьшения кромочных давлений показаны на рис. .

Упрочнением подступичных частей поверхностным наклепом (обкаткой роликами или шариками) можно повысить предел выносливости валов на 80 – 100%, причем этот эффект распростра- няется на валы диаметром до 500 – 600 мм.

Прочность валов в местах шпоночных, зубчатых (шлицевых) и других разъемных соединений со ступицей может быть повышена: применением эвольвентных шлицевых соединений; шлицевых соединений с внутренним диаметром, равным диаметру вала на соседних участках, или с плавным выходом шлицев на поверхность, обеспечивающим минимум концентрации напряжений; шпоночных канавок, изготовляемых дисковой фрезой и имеющих плавный выход на поверхность; бесшпоночных соединений.

Осевые нагрузки и на валы от насаженных на них деталей передаются следующими способами. (рис.)

1) тяжелые нагрузки – упором деталей в уступы на валу, посадкой деталей или установочных колец с натягом (рис. ,а и б)

2) средние нагрузки – гайками, штифтами непосредственно или через установочные кольца, клеммовыми соединениями (рис. ,в – д);

3) легкие нагрузки и предохранение от перемещений случайными силами – стопорными винтами непосредственно или через установочные кольца, клеммовыми соединениями, пружинными кольцами (рис. ,д – ж).

Валы и оси

План 1. Назначение. 2. Классификация. 3. Конструктивные элементы валов и осей. 4. Материалы и термообработка. 5. Расчеты валов и осей.

Назначение

Валы - детали, предназначенные для передачи крутящего момента вдоль своей оси и для поддержания вращающихся деталей машин. Вал воспринимает силы, действующие на детали, и передает их на опоры. При работе вал испытывает изгиб и кручение.

Оси предназначены для поддержания вращающихся деталей, полезного крутящего момента не передают. Оси не испытывают кручения. Оси могут быть неподвижные и вращающиеся.

Классификация валов

По назначению:

а) валы передач, несущие детали передач - муфты, зубчатые колеса, шкивы, звездочки;

б) коренные валы машин;

в) другие специальные валы, несущие рабочие органы машин или орудий - колеса или диски турбин, кривошипы, инструменты и т.д.

По конструкции и форме:

а) прямые;

б) коленчатые;

в) гибкие.

Прямые валы делятся на:

а) гладкие цилиндрические;

б) ступенчатые;

в) валы – шестерни, валы – червяки;

г) фланцевые;

д) карданные.

По форме поперечного сечения:

а) гладкие сплошного сечения;

б) пустотелые (для размещения соосного вала, деталей управления, подачи масла, охлаждения);

в) шлицевые.

Оси разделяют на вращающиеся, обеспечивающие лучшую работу подшипников, и неподвижные, требующие встройки подшипников во вращающиеся детали,

Конструктивные элементы валов и осей

Опорная часть вала или оси называется цапфой . Концевая цапфа называется шипом , а промежуточная – шейкой .

Кольцевое утолщение вала, составляющее с ним одно целое, называется буртиком . Переходная поверхность от одного сечения к другому, служащая для упора насаживаемых на вал деталей, называется заплечиком.

Для уменьшения концентрации и повышения прочности, переходы в местах изменения диаметра вала или оси делают плавными. Криволинейную поверхность плавного перехода от меньшего сечения к большему называют галтелью. Галтели бывают постоянной и переменной кривизны. Переменность радиуса кривизны галтели повышает несущую способность вала на 10%. Галтели с подвнутрением увеличивают длину базирования ступиц.

Повышение прочности валов в переходных сечениях достигается также удалением малонапряженного материала: выполнением разгрузочных канавок и высверливанием отверстий в ступенях большого диаметра. Эти мероприятия обеспечивают более равномерное распределение напряжений и снижают концентрацию напряжений

Форма вала по длине определяется распределением нагрузок, т.е. эпюрами изгибающих и крутящих моментов, условиями сборки и технологией изготовления. Переходные участки валов между ступенями разных диаметров нередко выполняют с полукруглой канавкой для выхода шлифовального круга.

Посадочные концы валов, предназначенные для установки деталей, передающих вращающий момент в машинах, механизмах приборах стандартизованы. ГОСТ устанавливает номинальные размеры цилиндрических валов двух исполнений (длинные и короткие) диаметров от 0,8 до 630 мм, а также рекомендуемые размеры концов валов с резьбой. ГОСТ устанавливает основные размеры конических концов валов с конусностью 1:10 также двух исполнений (длинные и короткие) и двух типов (с наружной и внутренней резьбой) диаметров от 3 до 630 мм.

"Горцы валов для облегчения насадки деталей, во избежание обмятий и повреждения рук рабочих выполняют с фасками.

Материалы и термообработка

Выбор материала и термической обработки валов и осей определяется критериями их работоспособности.

Основными материалами для валов и осей служат углеродистые и легированные стали благодаря высоким механическим характеристикам, способности к упрочнению и легкости получения цилиндрических заготовок прокаткой.

Для большинства валов применяют среднеуглеродистые и легированные стали 45, 40Х. Для высоконапряженных валов ответственных машин применяют, легированные стали 40ХН, 40ХНГМА, 30ХГТ, 30ХГСА и др. Валы из этих сталей обычно подвергают улучшению, закалке с высоким отпуском или поверхностной закалке с нагревом ТВЧ и низким отпуском.

Для изготовления фасонных валов - коленчатых, с большими фланцами и отверстиями - и тяжелых валов наряду со сталью применяют высокопрочные чугуны (с шаровидным графитом) и модифицированные чугуны.

Расчет валов и осей

Валы испытывают действие напряжений изгиба и кручения, оси - только изгиба.

В процессе работы валы испытывают значительные нагрузки, поэтому для определения оптимальных геометрических размеров необходимо выполнить комплекс расчетов, включающий в себя определение:

Статической прочности;

Усталостной прочности;

Жесткости при изгибе и кручении.

При высоких скоростях вращения необходимо определять частоты собственных колебаний вала для того, чтобы предотвратить попадание в резонансные зоны. Длинные валы проверяют на устойчивость.

Расчет валов производится в несколько этапов.

Для выполнения расчета вала необходимо знать его конструкцию (места приложения нагрузки, расположение опор и т.п.) В то же время разработка конструкции вала невозможна без хотя бы приближенной оценки его диаметра. На практике обычно используют следующий порядок расчета вала:

1. Предварительно оценивают средний диаметр из расчета только на кручение при пониженных допускаемых напряжениях (изгибающий момент пока не известен, т.к. неизвестны расположение опор и места приложения нагрузок).

Напряжение кручения

Где Wp- момент сопротивления сечения, мм.

Предварительно оценить диаметр вала можно также ориентируясь на диаметр того вала, с которым он соединяется,(валы передают одинаковый момент Т). Например, если вал соединяется с валом электродвигателя (или другой машины) то диаметр его входного конца можно принять равным или близким к диаметру выходного конца вала электродвигателя.

2.Основной расчет вала.

После оценки диаметра вала разрабатывают его конструкцию. Длину участков вала, а, следовательно, плечо приложения силы возьмем из компоновки. Предположим, что нам нужно рассчитать диаметр вала, на котором сидит косозубая шестерня. Вычертим схему нагружений вала. Для этого вала, учитывая наклон зубьев шестерни и направление момента Т, левую опору заменяем шарнирно-неподвижной, а правую - шарнирно-под-вижной. Расчетные нагрузки рассматривают обычно как сосредоточенные, хотя действительные нагрузки не являются сосредоточенными, они распределены по длине ступицы, ширине подшипника. В нашем примере вал нагружен силами Ft, Fa. Fr, действующими в полюсе зацепления и крутящим моментом Т. Осевая сила Fa дает в вертикальной плоскости момент

Основной расчет валов и осей заключается в построении эпюр изгибающих моментов в горизонтальной и вертикальной плоскостях, построении эпюры результирующих моментов, эпюры крутящих моментов, эпюры эквивалентных моментов, определении опасных сечений.

3 этап расчета - проверочный расчет заключается в определении коэффициента запаса прочности в опасных сечениях

- коэффициенты запаса прочности по нормальным и касательным напряжениям

пределы выносливости материалов.

- эффективные коэффициенты концентрации напряжений.

- масштабный фактор (зависит от диаметра вала).

- коэффициент упрочнения. - коэффициенты чувствительности материала, зависят от механических характеристик.

- переменные составляющие напряжений.

- постоянные составляющие напряжений.

Расчет на жесткость

Прогиб осей и валов отрицательно влияет на работу подшипников и зацепления зуб- чатых передач. Жесткость характеризуется максимальным углом поворота оси или вала

и прогибом Необходимая жесткость обеспечивается, если действительные значения и не превышают допустимых . При больших углах поворота в подшипниках скольжения защемляется вал (особенно при большой длине подшипника и цапфы), а у подшипников качения может разрушиться сепаратор. Большие прогибы ухудшают условия работы зубчатых передач (особенно при несимметричном расположении шестерни).

Допустимые значения углов поворота под шестерней [

Описание работы

Технология изготовления,применение деталей данного типа в механике,в авиации,в промышленности

Введение 2
1.Общий раздел 4
1.1. Описание конструкции и служебного назначения детали. 4
1.2. Технологический контроль чертежа детали и анализ детали на технологичность. 4
2.Технологический раздел. 7
2.1.Характеристика среднесерийного типа производства. 7
2.2.Выбор вида и метода получения заготовки; экономическое обоснование выбора заготовки. 9
2.3.Разработка маршрута механической обработки детали с выбором оборудования и станочных приспособлений. Выбор и обоснование баз. 13
2.4.Расчет межоперационных размеров на две наиболее точные поверхности аналитическим методом, на остальные табличным. 15
2.5.Разбивка технологического процесса на составляющие операции. Выбор режущего, вспомогательного и измерительного инструмента. 22
2.6. Расчет режимов резания и нормирование операций 23
2.7.Расчет норм времени 25
3. Конструкторский раздел 27
3.1. Конструирование и расчет режущего инструмента 27
СПИСОК ЛИТЕРАТУРЫ 30

Работа содержит 1 файл

К.Т2.151901.4Д.05.000ПЗ


Рост промышленности и народного хозяйства, а также темпы перевооружения их новой техникой в значительной мере зависят от уровня развития машиностроения. Технический прогресс в машиностроении характеризуется совершенствованием технологии изготовления машин, уровнем их конструктивных решений и надежности их в последующей эксплуатации.

В настоящее время важно - качественно, дешево, в заданные сроки с минимальными затратами живого и овеществленного труда изготовить машину, применив современную высокопроизводительную технику, оборудование, инструмент, технологическую оснастку, средства механизации и автоматизации производства.

Разработка технологического процесса изготовления машины не должна сводится к формальному установлению последовательности обработки поверхностей деталей, выбору оборудования и режимов. Она требует творческого подхода для обеспечения согласованности всех этапов построения машины и достижения требуемого качества с наименьшими затратами.

При проектировании технологических процессов изготовления деталей машин необходимо учитывать основные направления в современной технологии машиностроения:

Приближение заготовок по форме, размерам и качеству поверхностей к готовым деталям, что дает возможность сократить расход материала, значительно снизить трудоемкость обработки деталей на металлорежущих станках, а также уменьшить затраты на режущие инструменты, электроэнергию и прочее.

Повышение производительности труда путем применения: автоматических линий, автоматов, агрегатных станков, станков с ЧПУ, более совершенных методов обработки, новых марок материалов режущих инструментов.

Концентрация нескольких различных операций на одном станке для одновременной или последовательной обработки большим количеством инструментов с высокими режимами резания.

Применение электрохимических и электрофизических способов размерной обработки деталей.

Развитие упрочняющей технологии, повышение прочностных и эксплуатационных свойств деталей путем упрочнения поверхностного слоя механическим, термическим, термомеханическим, химикотермическим способами.

Применение прогрессивных высокопроизводительных методов обработки, обеспечивающих высокую точность и качество поверхностей деталей машины, методов упрочнения рабочих поверхностей, повышающих ресурс работы детали и машины в целом, эффективное использование автоматических и поточных линий, станков с ЧПУ - все это направлено на решение главных задач: повышение эффективности производства и качества продукции.

1.Общий раздел

1.1. Описание конструкции и служебного назначения детали.

Данная деталь «Ось», массой 3.7кг изготовлена из стали 45 ГОСТ 1050-88.

Деталь относится к классу «вал» и имеет форму вращения. Деталь состоит из 6 ступеней:

На первой ступени нарезана резьба М20-69, с шероховатостью Ra6.3, на длине 21 мм.

Вторая цилиндрическая Ø20 h8мм, шероховатость поверхности Ra3.2, длиной 18 мм; Допуск h8 предназначен для жесткой посадки стыкуемой детали.

Третья ступень выполнена без механической обработки, Ø25мм, длиной 5 мм.

Четвертая цилиндрическая ступень Ø20мм, длиной 80мм, на которой выполнены пазы для сопрягаемой детали и исключающие поворот сопрягаемой детали.

Пятая ступень выполнена Ø15f7 мм, длиной 25 мм, этот допуск говорит о том, что сопрягаемая деталь одевается на ось жестко.

На шестой ступени выполнена резьба М12-83 и отверстие Ø3.2мм.

Деталь «Ось» предназначена для передачи крутящего момента.

1.2. Технологический контроль чертежа детали и анализ детали на технологичность

Химический состав и механические свойства материала детали

Сталь 45 ГОСТ 1050-88. Сталь углеродистая конструкционная качественная.

Химический состав детали

С Si Mn Ni S P Cr Cu As Fe
0,42÷0,5 0,17÷0,37 0,5÷0,8 до 0,25 до 0,04 до 0,035 до 0,25 до 0,25 до 0,08 ост.

Механические свойства

Деталь достаточно технологична. В упрощении конструкции деталь не нуждается. Базой детали является ось и торцы. Искусственные базы не требуются.

Токарную обработку будем производить в центрах, и в специальных приспособлениях. Фрезерование производим с помощью фрезы круглого сечения, а сверление на сверлильном станке с ЧПУ и с применением специального приспособления. Нарезание резьбы будем производить на токарном станке с ЧПУ.

Для измерения заданных на чертеже размеров следует использовать следующие мерительные инструменты: скобы, пробки, штангенциркули, шаблоны, индикаторы, резьбовые пробки.

Качественный анализ технологичности конструкции детали.

Деталь должна изготавливаться с минимальными трудовыми и материальными затратами. Эти затраты можно сократить в значительной степени в результате правильного выбора варианта технологического процесса, его оснащения, механизации и автоматизации, применения оптимальных режимов обработки и правильной подготовки производства. На трудоемкость изготовления детали оказывают особое влияние ее конструкция и технические требования на изготовление.

Данная деталь по качественной оценке является технологичной:

Конструкция детали состоит из стандартных и унифицированных конструктивных элементов; большинство обрабатываемых поверхностей детали имеют правильную простановку размеров, оптимальные степень точности и шероховатость;

Конструкция детали позволяет изготавливать ее из заготовки, полученной рациональным способом;

Конструкция обеспечивает возможность применения типовых и стандартных технологических процессов при изготовлении.

Все вышеизложенное, позволяет сделать вывод, что представленная деталь является технологичной.

Коэффициент точности обработки определяется по формуле

(1)

где

где цифры обозначают квалитеты точности размеров.

n 1 ; n 2 и т.д. – количество размеров данного квалитета точности.

Коэффициент шероховатости обработки определяется по формуле

(3)

где

где цифры обозначают классы шероховатости поверхности.

При К ТО ≤0,80 деталь считается трудоемкой в производстве.

n 1 ; n 2 и т.д. – количество поверхностей данного класса шероховатости.

При К ШО ≤0,16 деталь считается трудоемкой в производстве.

Вывод : Кт = 0,99 Кш = 0,91

0,99› 0,8 0,91› 0,16

Все выше изложенное позволяет сделать вывод, что представленная деталь является технологичной.

2.Технологический раздел

2.1.Характеристика среднесерийного типа производства

Характеристика вида производства.

Серийный тип производства характеризуется ограниченной номенклатурой выпуска, детали изготавливаются периодически повторяющимися партиями. Трудоёмкость и себестоимость ниже, чем в единичном производстве. Различают мелкосерийное, среднесерийное и крупносерийное типы производства. Крупносерийный тип производства характеризуется применением специализированного оборудования расположенного на участке по ходу технологического процесса. Применяется специализированный режущий и мерительный инструмент. Квалификация рабочих низкая. Применяется принцип не полной взаимозаменяемости.

Таблица 3.

Ориентировочное определение типа производства

Тип

производства

Годовой объем выпуска
Тяжелых Средних Легких
> 30 кг 8 - 30 кг < 8 кг
Единичное < 5 < 10 < 100
Мелкосерийное 5 – 100 10 – 200 100 - 500
Среднесерийное 100 – 300 200 – 500 500 - 5000
Крупносерийное 300 – 1000 500 – 5000 5000 - 50000
Массовое > 1000 > 5000 > 50000

Ориентировочно по таблице определяем тип производства - среднесерийное.

Более точно можно определить тип производства по коэффициенту закрепления операций К з.о. .

при К з.о. = 1 - производство массовое,

1 £ К з.о. £ 10 – крупносерийное,

10 £ К з.о. £ 20 - среднесерийное,

20 £ К з.о. £ 40 - мелкосерийное,

40 > К з.о. – единичное производство.

Значение К з.о. на стадии разработки процесса вычисляют по формуле:

      Где: S О – количество операций, выполняемых на участке в течение месяца,