Технология обработки деталей на горизонтально фрезерном станке. Что это такое фрезеровка, и виды фрезерования. Саратовский государственный технический университет

В промышленности широко применяются одношпиндельные фрезерные станки - горизонтальные, вертикальные и универсальнофрезерные горизонтальные. Имеются, кроме того, специализированные и специальные фрезерные станки. К специализированным фрезерным станкам относятся многошпиндельные продольно-фрезерные с расположением шпинделей в различных плоскостях; торцово-фрезерные для обработки плоскостей, карусельно-фрезерные с вращающимися столами; барабанно-фрезерные с вращающимся барабаном и копировально-фрезерные для обработки фасонных поверхностей. К специальным станкам относятся резьбофрезерные, шпоночно-фрезерные, агрегатно-фрезерные и реечные.

В одношпиндельном горизонтально-фрезерном станке шпиндель расположен горизонтально; в вертикально-фрезерном станке - вертикально; в остальном устройство станка принципиально не отличается от горизонтально-фрезерного. Вертикально-фрезерные станки снабжают как прямоугольными, так и круглыми столами.

Универсально-фрезерные станки отличаются от описанных тем, что они имеют поворотный стол, который позволяет выполнять операции по фрезерованию винтовых канавок (например, у спиральных сверл) и зубчатых колес с винтовыми зубьями.

Продольно-фрезерный станок является характерным для группы специализированных фрезерных станков. Такие станки изготовляют с одним или несколькими вертикальными и горизонтальными шпинделями; в последнем случае заготовку можно обрабатывать одновременно с нескольких сторон. На рис. 175, а показан общий вид четырехшпиндельного продольно-фрезерного станка. По направляющим станины 1 может перемещаться стол 2, на котором закрепляют заготовки. Обработку выполняют фрезами, установленными в шпинделях, находящихся в шпиндельных бабках 3, 5, 6 и 7. Так как стол неподвижен, то чтобы получить требуемые размеры при обработке, инструмент устанавливают выдвижением шпинделей вдоль их оси и перемещением шпиндельных бабок 5 и 6 по направляющим поперечины 4 перпендикулярно осям шпинделей этих бабок.

Барабанно-фрезерные станки относятся к группе непрерывно действующих станков. Они имеют преимущественное распространение в крупносерийном и массовом производстве. На таких станках может производиться одновременная обработка двух плоскостей заготовок. На рис. 175, б приведена схема станка. На валу 5, проходящем через раму станины, смонтирован барабан 3, имеющий форму правильного четырехугольника (а иногда пяти- и шестиугольника), на гранях которого установлены приспособления 6 для закрепления детали. Вал вместе с барабаном 3 вращается от отдельного привода 4. Частота вращения барабана может регулироваться коробкой подач, помещенной в корпусе станины.

На двух стойках 1 размещены фрезерные головки 2, которые представляют собой самостоятельные узлы с индивидуальными приводами. Фрезерные головки могут перемещаться на стойках и закрепляться в любом положении согласно настройке станка. Для регулирования глубины фрезерования шпиндели кроме вращательного движения имеют поступательное движение по направлению оси вращения. Производительность станка зависит от количества одновременно обрабатываемых заготовок и частоты вращения барабана.

На фрезерных станках плоские поверхности можно обрабатывать цилиндрическими фрезами при движении стола станка с закрепленной заготовкой навстречу направлению движения зубьев, т. е. методом встречного фрезерования (рис. 176, а) или в том же направлении методом попутного фрезерования (рис. 176, б). В обоих случаях стружка, снимаемая каждым зубом фрезы, имеет форму запятой, но в первом случае толщина стружки постепенно увеличивается в процессе резания, а во втором уменьшается.

Преимущество встречного фрезерования заключается в плавном увеличении нагрузки на зуб и во врезании зубьев в металл под коркой. Недостатком этого метода является стремление фрезы оторвать заготовку от поверхности стола.

Точность фрезерования зависит от типа станка, инструмента, режимов резания и других факторов. При фрезеровании может быть достигнута точность по 8…11-му квалитетам, а при скоростном и тонком фрезеровании - до 7-го квалитета. Шероховатость поверхности при чистовом фрезеровании Rа=6,3…1,6 мкм.

На рис. 177 приведены различные виды обработки на фрезерных станках: α - обработка плоскости цилиндрической фрезой; б - обработка плоскости торцевой фрезой; в, г - обработка вертикальной плоскости и паза дисковой трехсторонней фрезой; д - обработка паза концевой фрезой; е - обработка боковых плоскостей двумя торцевыми фрезами; ж - обработка сложного профиля набором фрез.

Горизонтально-фрезерные и вертикально-фрезерные станки относят к универсальному виду оборудования. Схемы компоновок вертикально-фрезерного и горизонтально-фрезерного станков представлены на рис.4.1 (обозначения аналогичных узлов станков приняты для схем «а» и «б» одинаковыми).

Рис.4.1. Схемы компоновок вертикально-фрезерного (а) и горизонтально-фрезерного (б) станков

В станине 1 (рис.4.1,б) горизонтально-фрезерного станка размещена коробка скоростей 2 и вмонтирован шпиндель 8, в котором закрепляют режущий инструмент. На горизонтально-фрезерных станках в основном используют насадные фрезы (цилиндрические, дисковые, угловые), которые можно закреплять с помощью центровой оправки, вставляемой в коническое отверстие шпинделя. На направляющей хобота 10 станка монтируют подвески 11, поддерживающие правый консольный конец оправки. Фреза со шпинделем совершает главное вращательное движение. Движение на фрезу передается от шпинделя через шпонку. Заготовку устанавливают в приспособлении, которое закрепляется на столе 7. При небольшом объеме производства в качестве приспособления применяют универсальные машинные тиски, прижимные планки и т.п. В массовом производстве используют специальные приспособления с механизированным приводом.

При обработке на горизонтально-фрезерном станке, как правило, используют продольную подачу, которую заготовка совершает вместе со столом при его перемещении по направляющим поперечных салазок 6. Реже используют поперечную и вертикальную подачи. Поперечная подача осуществляется при перемещении поперечных салазок по направляющей консоли 5, а вертикальная – при перемещении консоли по вертикальным направляющим станины. На универсальных горизонтально-фрезерных станках имеется дополнительная поворотная плита, которая позволяет поворачивать стол с заготовкой вокруг вертикальной оси на определенный угол по отношению к направлению продольной подачи.

На рис.4.1,а представлена схема компоновки вертикально-фрезерного станка. По вертикальным направляющим станины 1 станка перемещается консоль 5. Установочное вертикальное положение консоли зависит от габаритных размеров заготовки. Заготовка, установленная на столе станка, может получить движение подачи в трех направлениях: продольном вместе со столом 7; поперечном вместе с салазками 6; вертикальном вместе с консолью. Перемещение поперечных салазок и продольного стола осуществляется шаговыми электродвигателями с гидроусилителями. В консоли размещается привод - коробка подач 4. При обработке на вертикально-фрезерном станке в основном используют продольную и поперечную подачи в зависимости от пространственного расположения обрабатываемой поверхности заготовки. Вертикальную подачу на этом станке используют очень редко.


На вертикально-фрезерных станках шпиндель 8 вмонтирован в поворотную фрезерную головку 9, его можно поворачивать вокруг горизонтальной оси вместе со шпиндельной головкой.

Вертикально-фрезерные станки с ЧПУ, которые проектируются на базе универсальных станков, позволяют осуществлять программированные перемещения салазок, стола, шпинделя и автоматически устанавливать заготовку относительно инструмента по заданным координатам.

Для обработки на фрезерных станках в качестве режущего инструмента используют фрезы различных типов. Тип фрезы для каждого конкретного случая обработки выбирается в зависимости от вида обрабатываемой поверхности заготовки и модели используемого оборудования. Цилиндрические и дисковые односторонние фрезы имеют режущие кромки, расположенные на наружной цилиндрической поверхности. У дисковых двухсторонних, торцовых насадных, угловых, шпоночных и концевых фрез режущие зубья располагаются на наружной цилиндрической и одной торцовой поверхностях. У дисковых трехсторонних фрез зубья расположены на наружной цилиндрической поверхности и двух торцах. Соответственно, такими инструментами можно одновременно обработать одну, две или три плоскости.

В зависимости от типа режущего инструмента различают:

1) периферийное фрезерованиелезвийным инструментом;

2) торцовое фрезерование лезвийным инструментом;

3) охватывающее фрезерование инструментом, зубья которого расположены на внутренней поверхности его корпуса.

Конструктивно фрезы изготавливаются либо с осевым отверстием (насадные), либо с коническим или цилиндрическим хвостовиком (концевые). Эта конструктивная особенность обусловливает способ крепления инструмента на станке (рис.4.2). Насадные фрезы закрепляют на оправках 5, хвостовые – в отверстие шпинделя напрямую или через переходную втулку 3. При этом инструмент вместе с втулкой жестко крепится к шпинделю 2 специальным длинным резьбовым элементом 1, называемым шомполом.

Рис.4.2. Способы крепления фрез: а – хвостовых; б – насадных: 1 – шомпол; 2 – шпиндель; 3 – втулка; 4 – шпонка торцовая; 5 – оправка; 6 – втулка; 7 – инструмент (фрезы); 8 – шпонка осевая; 9 – гайка; 10 – цапфа оправки; 11 – серьга; 12 – хобот

Некоторые наиболее распространенные схемы фрезерования различных поверхностей на универсальных фрезерных станках показаны на рис.4.3.

1) против подачи (встречное), когда направление подачи противоположно направлению вращения фрезы;

2) по подаче (попутное), когда направления подачи и вращения фрезы совпадают.

При фрезеровании против подачи нагрузка на зуб фрезы возрастает от нуля до максимума, при этом сила, действующая на заготовку, стремится оторвать ее от стола, что приводит к вибрациям и увеличению шероховатости обработанной поверхности. Преимуществом фрезерования против подачи является работа зубьев фрезы «из-под корки», т. е. фреза подходит к твердому поверхностному слою снизу и отрывает стружку. Недостатком является наличие начального скольжения зуба по наклепанной поверхности, образованной предыдущим зубом, что вызывает повышенный износ фрезы.

При фрезеровании по подаче зуб фрезы сразу начинает срезать слой максимальной толщины и подвергается максимальной нагрузке. Это исключает начальное проскальзывание зуба, уменьшает износ фрезы и шероховатость обработанной поверхности. Сила, действующая на заготовку, прижимает ее к столу станка, что уменьшает вибрации.

Схемы обработки заготовок на горизонтально - и вертикально - фрезерных станках (рис. 2)

Движения, участвующие в формообразовании поверхностей в процессе резания, на схемах указаны стрелками.

Горизонтальные плоскости фрезеруют на горизонтально-фрезерных станках цилиндрическими фрезами (рис. 2, а) и на вертикально-фрезерных станках торцовыми фрезами (рис. 2, б). Цилиндрическими фрезами целесообразно обрабатывать горизонтальные плоскости шириной до 120 мм. В большинстве случаев плоскости удобнее обрабатывать торцовыми фрезами вследствие большей жесткости их крепления в шпинделе и более плавной работы, так как число одновременно работающих зубьев торцовой фрезы больше числа зубьев цилиндрической фрезы.

Вертикальные плоскости фрезеруют на горизонтально-фрезерных станках торцовыми фрезами (рис. 2, в) и торцовыми фрезерными головками, а на вертикально-фрезерных станках концевыми фрезами (рис. 2, г).

Наклонные плоскости и скосы фрезеруют торцовыми (рис. 2, д) и концевыми фрезами на вертикально-фрезерных станках, у которых фрезерная головка со шпинделем поворачивается в вертикальной плоскости. Скосы фрезеруют на горизонтально-фрезерном станке одноугловой фрезой (рис. 2, е).

Комбинированные поверхности фрезеруют набором фрез (рис. 2, ж) на горизонтально-фрезерных станках. Точность взаиморасположения обработанных поверхностей зависит от жесткости крепления фрез по длине оправки. С этой целью применяют дополнительные опоры (подвески), избегают использования несоразмерных по диаметру фрез (рекомендуемое отношение диаметра фрез не более 1,5).

Уступы и прямоугольные пазы фрезеруют концевыми (рис. 2, з) и дисковыми (рис. 2, и) фрезами на вертикально- и горизонтально-фрезерных станках. Уступы и пазы целесообразнее фрезеровать дисковыми фрезами, так как они имеют большее число зубьев и допускают работу с большими скоростями резания.

Фасонные пазы фрезеруют фасонной дисковой фрезой (рис. 2, к), угловые пазы - одноугловой и двухугловой (рис. 2, л) фрезами на горизонтально-фрезерных станках.Паз клиновой фрезеруют на вертикально-фрезерном станке за два прохода: прямоугольный паз - концевой фрезой, затем скосы паза - концевой одноугловой фрезой (рис. 2, м).

Т-образные пазы (рис. 2, н), которые широко применяют в машиностроении как станочные пазы, например на столах фрезерных станков, фрезеруют обычно за два прохода: вначале паз прямоугольного профиля концевой фрезой, затем нижнюю часть паза - фрезой для Т-образных пазов.

Шпоночные пазы фрезеруют концевыми или шпоночными (рис. 2, о) фрезами на вертикально-фрезерных станках. Точность получения шпоночного паза - важное условие при фрезеровании, так как от нее зависит характер посадки на шпонку сопрягаемых с валом деталей.

Фасонные поверхности незамкнутого контура с криволинейной образующей и прямолинейной направляющей фрезеруют на горизонтально- и вертикально-фрезерных станках фасонными фрезами соответствующего профиля (рис. 2, п). Применение фасонных фрез эффективно при обработке узких и длинных фасонных поверхностей. Широкие профили обрабатывают набором фасонных фрез.

Базированием называется придание детали определенного положения относительно режущего инструмента при ее механической обработке на станках. Оно осуществляется путем доведения базовых поверхностей детали до соприкосновения с установочными элементами приспособления. При этом, если установочная и исходная базы детали не совпадают, неизбежно возникает погрешность базирования, величина которой определяется предельными отклонениями исходной базы относительно режущего инструмента. О погрешности базирования можно говорить только при обработке способом автоматического получения заданного размера, когда для всей партии обрабатываемых деталей настройка режущего инструмента постоянна. И, наоборот, при обработке способом пробных проходов при любом расположении установочной и исходной баз погрешность базирования отсутствует, так как для каждой обрабатываемой детали расположение режущего инструмента корректируется по исходной базе.

Погрешность выдерживаемого размера обрабатываемой детали DИ можно представить как сумму погрешности базирования - D баз и всех прочих погрешностей, связанных с процессом обработки - w.

Откуда, допускаемое значение погрешностей базирования

(3.2)

Следовательно, обеспечение требуемой точности размера возможно при соблюдении условия

где - фактическое значение погрешности базирования.

При обратном соотношении этих величин, во избежание брака, необходимо уменьшить значение , для чего необходимо:

Или изменить схему базирования;

Или ужесточить допуски на базисные размеры;

Или расширить поле допуска выдерживаемого размера (если это не нарушает правильность функционирования детали).

Величина рассчитывается аналитически и представляется виде полного дифференциала уравнения размерной цепи, в котором приращение вектора, связывающего исходную базу детали с установочной базой приспособления, выражена через соответствующего приращения базисных размеров.

Объясним суть метода на примере.

Предположим у детали цилиндрической формы требуется профрезеровать уступ, выдержав размер И (см. рис.3.1).

1. При установке на плоскости (схематически показанной на рис. 3.2), погрешность базирования будет равна нулю, т.к. исходная база у всех заготовок занимает одно и то же положение и совпадает с установочной.


Рис. 3.2 Рис. 3.3

Исходя из равенства И=Н (с учетом, что Н = const, DН = 0), можем написать, что

(3.5)

2. Оставив все прочие условия постоянными, вместо приспособления, показанного на рис 3.2, примем для установки деталей призму, схематически показанную на рис 3.3.

При данной установке, где исходная и установочная базы не совпадают, будем иметь погрешность базирования, что зависит от погрешности заданного размера DD . При этом исходный размер выражается в соответствии с рис 3.3:

. (3.6)

Подставляя значение О / К (что определяется из DОО / m ) в выражении (3.6), получим

. (3.7)

Откуда погрешность базирования (с учетом, что DН= 0) будет равна

(3.8)

Итак, при этом, погрешность базирования имеет место и обратно пропорциональна величине погрешности заданного размера - DD=d D .

Работа выполняется на вертикально фрезерном станке.

Режущий инструмент – фреза концевая с цилиндрическим хвостовиком, диаметром D =25мм.

Заготовка – валики, в количестве 5 штук с диаметром Æ20 -0,36 мм, длиной L= 100мм, (желательно брать партию заготовок с большим полем рассеивания).

Работу следует выполнять в следующей последовательности:

1) Ознакомиться с рабочим чертежом заготовки (рис 3.1.) и схемами установки (рис 3.2 и 3.3)

2) Установить заготовку по первой схеме и по заданной настройке, обработать партию деталей с одного конца. Величина исходного размера и режимы резания задаются руководителем занятий.

3) Установить детали по второй схеме см. рис. 3.3) и профрезеровать уступ с другой стороны. Во избежание путаницы, на торцевых поверхностях наносить знаки кернером.

Фрезерование является одним из высокопроизводительных методов механической обработки деталей. Фрезерованием обрабатывают плоские горизонтальные, вертикальные, наклонные и фасонные поверхности, уступы и пазы различного профиля.

Инструментом для обработки является фреза имеющая несколько режущих кромок (зубьев). Количество и форма режущих зубьев зависит от типа фрезы. Главным является вращательное движение инструмента (фрезы) и поступательное движение подачи. В зависимости от назначения и вида обрабатываемых поверхностей различают следующие типы фрез: цилиндрические Рис. 6 (а), торцевые рис.6(б), дисковые Рис.6(в), концевые Рис. 6. 7 (г), угловые рис. 6.7 (д), шпоночные Рис.6 . Рис. 6 (е), фасонные Рис. 6 (ж).

В зависимости от типа станка, вида обрабатываемой поверхности применяют определённые типы фрез. В большинстве случаев обработка производится на горизонтально- фрезерных и вертикально-фрезерных станках.

На Рис.7 приведён общий вид горизонтально-фрезерного станка состоящего из станины 1 с коробкой скоростей 2. По направляющим станины в вертикальном направлении перемещается консоль 7 с коробкой подачи 8. Салазки 6 перемещаются в поперечном направлении по направляющей консоли S n , а стол 4 с закреплённой на ней деталью перемещается в продольном направлении S пр, по направляющим салазок. В верхней части станины размещён хобот 3 с подвижной подвеской 5 , для крепления оправки с цилиндрической фрезой 9, а на станине шпиндель 10 для крепления фрезы или оправки.

Рис.7 Рис.8

На Рис.8 представлен общий вид вертикально-фрезерного станка. В станине 1 размещена коробка скоростей 2 . . В верхней части станины смонтирована поворотная головка 3, ось вращения которой перпендикулярна оси вращения шпинделя 4. В шпинделе поворотной головки крепят фрезы. Головка 3 поворачивается относительно рабочего стола 5 в вертикальной плоскости на требуемый при обработке угол. Главным движением является вращение фрезы. Стол с закреплённой заготовкой перемещается по направляющим салазок 6 в продольном направлении S пр. Салазки в свою очередь, перемещаются по направляющим консоли 7 в поперечном направлении S п. Консоль по направляющим станины перемещается в вертикальном направлении.




Рис.9

На Рис. 9 приведены схемы фрезерования поверхностей на горизонтально и вертикально фрезерных станках.

Горизонтальные плоскости можно обрабатывать как на горизонтально-фрезерных станках Рис.9 (а), цилиндрическими фрезами, так и на вертикально-фрезерных станках рис 9 (б) торцевыми фрезами.

Вертикальные плоскости обрабатывают на горизонтально-фрезерных станках торцевыми фрезами Рис.9 (в), на горизонтально-фрезерных станках концевыми фрезами Рис.9 (г).

Наклонные плоскости обрабатывают на вертикально фрезерных станках торцевыми фрезами рис.9 (д) и концевыми фрезами рис. 9 (е). Угол наклона плоскости обеспечивается поворотом фрезерной головки.

При обработке на горизонтально-фрезерном станке фрезерование производят одно угловой фрезой Рис. 9 (ж).

Комбинированные поверхности фрезеруют на горизонтально-фрезерных станках набором фрез Ри. 9 (з) установленных на оправке, закреплённой в шпинделе и подвижной опоре.

Уступы и прямоугольные пазы обрабатывают как на горизонтально-фрезерных,так и на вертикально-фрезерных станках дисковыми ри.9 (и) и концевыми фрезами соответственно Рис. 9(к).

фасонные пазы фрезеруют фасонными дисковыми фрезами Рис. 9 (л), угловые пазы одно угловой и двух угловой фрезами рис.9 (м) на горизонтально-фрезерных станках.

Паз типа «ласточкин хвост» фрезеруют на вертикально-фрезерном станке в два этапа. На первом этапе фрезеруется прямо угольный паз концевой фрезой, на втором этапе обрабатывают скосы концевой одно угловой фрезой Рис.9.(н).

Т образные пазы фрезеруют аналогичным образом, что и «ласточкин хвост», только на втором этапе используют дисковую фрезу для Т-образных пазов Рис.9 (о).

Закрытые шпоночные пазы обрабатывают концевыми фрезами Рис. 9(п) , а открытые концевыми или шпоночными фрезами Рис.9 (р) на вертикально-фрезерных станках. При применении шпоночной фрезы точность изготовления пазов повышается.Пазы под сегментные шпонки обрабатывают дисковыми фрезами Рис.9(с) на горизонтально-фрезерных станках.Фасонные поверхности не замкнутого контура с криволинейной образующей и прямолинейной направляющей фрезеруют на горизонтально- и вертикально-фрезерных станках Рис.6.10 (м) фасонными фрезами. Объёмные фасонные поверхности обрабатывают на копировально-фрезерных станках или станках с числовым программным управлением (ЧПУ) концевыми фрезами Рис.10.

Фрезерование производят полосками ширина которых равна диаметру фрезы и параллельными друг другу. Направление полосок может быть как продольным, так и поперечным. После фрезерования каждой строчки производят перемещение стола или фрезерной головки, в зависимости от выбора главной подачи. Главной подачей может быть перемещение фрезерной головки (в вертикальной плоскости), или стола (в горизонтальной плоскости).