Индукционная установка для закалки твч. Закалка металлов токами высокой частоты. Установка индукционного нагрева для ТВЧ закалки топоров

Ток высокой частоты образуется в установке благодаря индуктору и позволяет нагревать изделие, размещенное в непосредственной близости с индуктором. Индукционная установка идеально подходит для закалки металлических изделий. Именно в ТВЧ установке можно четко запрограммировать: нужную глубину проникновения тепла, время закалки, температуру нагрева и процесс охлаждения.

Впервые индукционное оборудование было использовано для закалки после предложения, поступившего от В.П. Володина в 1923 году. После долгих проб и тестирований ТВЧ нагрева его стали использовать для закалки стали с 1935 года. Установки ТВЧ для закалки на сегодняшний день являются наиболее продуктивным способом термообработки металлических изделий.

Почему индукционная установка лучше подходит для закалки

Закалка ТВЧ металлических деталей производится для повышения устойчивости верхнего слоя изделия к механическим повреждениям, при этом центр заготовки имеет повышенную вязкость. Важно отметить, что сердцевина изделия при ТВЧ закалке остается полностью неизменной.
Индукционная установка имеет немало очень важных преимуществ в сравнении с альтернативными видами нагрева: если раньше ТВЧ установки были более громоздкими и неудобными, то сейчас этот недостаток исправили, и оборудование стало универсальным для термообработки изделий из металла.

Преимущества индукционного оборудования

Один из минусов индукционной установки для закалки – это невозможность обработки некоторых изделий, имеющих сложную форму.

Разновидности закалки металла

Закалка металла бывает нескольких типов. Для одних изделий достаточно нагреть металл и сразу же остудить, а для других необходима выдержка при определенной температуре.
Существуют следующие виды закалки:

  • Стационарная закалка: применяется, как правило, для деталей, имеющих небольшую плоскую поверхность. Положение детали и индуктора при использовании данного способа закалки остается неизменным.
  • Непрерывно-последовательная закалка: применяется для закалки цилиндрических или плоских изделий. При непрерывно-последовательной закалке деталь может перемещаться под индуктором, либо сохраняет свою позицию неизменной.
  • Тангенциальная закалка изделий: отлично подходит для обработки небольших деталей, имеющих цилиндрическую форму. Тангенциальная непрерывно-последовательная закалка прокручивает изделие единожды в течение всего процесса термообработки.
  • Установка ТВЧ для закалки – это оборудование, способное произвести качественную закалку изделия и при этом сэкономить производственные ресурсы.

Закалка стали производится для придания металлу большей стойкости. Закалке подвергаются не все изделия, а только те, что часто истираются и повреждаются извне. После закалки верхний слой изделия становится очень прочным и защищенным от появления коррозийных образований и механических повреждений. Закалка токами высокой частоты дает возможность добиться именно того результата, который необходим производителю.

Почему именно закалка ТВЧ

Когда есть выбор, очень часто возникает вопрос «почему?». Почему стоит выбрать именно закалку ТВЧ, если есть и другие способы закалки металла, например, применение раскаленного масла.
Закалка ТВЧ имеет множество преимуществ, из-за которых стала активно применяться в последнее время.

  1. Под воздействием токов высокой частоты нагрев получается равномерным по всей поверхности изделия.
  2. Программное обеспечение индукционной установки может полностью проконтролировать процесс закалки для получения более точного результата.
  3. Закалка ТВЧ дает возможность нагрева изделия на необходимую глубину.
  4. Индукционная установка позволяет снизить количество брака в производстве. Если при использовании раскаленных масел на изделии очень часто образуются окалины, то нагрев ТВЧ полностью избавляет от этого. Закалка ТВЧ снижает количество бракованных изделий.
  5. Индукционная закалка надежно защищает изделие и дает возможность увеличения производительности на предприятии.

Преимуществ у индукционного нагрева очень много. Существует и один минус – в индукционном оборудовании очень сложно произвести закалку изделия, имеющего сложную форму (многогранники).

Оборудование для закалки ТВЧ

Для закалки ТВЧ используется современное индукционное оборудование. Индукционная установка компактна и позволяет за короткий промежуток времени обработать значительное количество изделий. Если на предприятии постоянно необходимо производить закалку изделий, то лучше всего приобрести закалочный комплекс .
В комплектацию закалочного комплекса входит: закалочный станок, индукционная установка, манипулятор, модуль охлаждения, а также при необходимости может быть добавлен комплект индукторов для закалки изделий разной формы и размеров.
Оборудование для закалки ТВЧ – это отличное решение для проведения качественной закалки металлических изделий и получения точных результатов в процессе преобразования металла.

Впервые закалку деталей с помощью индукционного нагрева предложил производить В.П. Володин. Было это почти век назад - в 1923 году. А в 1935 г. данный вид термической обработки стали использовать для закалки стали. Популярность закалки сегодня сложно переоценить - ее активно применяют практически во всех отраслях машиностроения, также очень востребованы и установки ТВЧ для закалки.

Для увеличения твердости закаленного слоя и повышения вязкости в центре стальной детали необходимо использовать поверхностную ТВЧ закалку. При этом происходит нагрев верхнего слоя детали до температуры закалки и резкое охлаждение. Важно, что свойства сердцевины детали остаются неизменными. Так как центр детали сохраняет вязкость, сама деталь становится более крепкой.

С помощью ТВЧ закалки удается упрочить внутренний слой легированной детали, ее применяют для среднеуглеродистых сталей (0,4-0,45% С).

Преимущества ТВЧ закалки:

  1. При индукционном нагреве изменяется только нужная часть детали, данный способ экономичнее обычного нагрева. Кроме того, ТВЧ закалка занимает меньше времени;
  2. При ТВЧ закалке стали удается избежать появления трещин, а также снизить риски брака по короблению;
  3. Во время нагрева ТВЧ не происходит выгорание углерода и образование окалины;
  4. При необходимости возможны изменения глубины закаленного слоя;
  5. Используя ТВЧ закалку, удается повысить механические свойства стали;
  6. При применении индукционного нагрева удается избежать появления деформаций;
  7. Автоматизация и механизация всего процесса нагрева находится на высоком уровне.

Однако ТВЧ закалка имеет и недостатки. Так, некоторые сложные детали обрабатывать весьма проблематично, а в некоторых случаях индукционный нагрев и вовсе недопустим.

Закалка ТВЧ стали - разновидности:

Стационарная ТВЧ закалка. Она применяется для закалки небольших плоских деталей (поверхностей). При этом положение детали и нагревателя постоянно сохраняется.

Непрерывно-последовательная ТВЧ закалка . При осуществлении данного вида закалки деталь либо перемещается под нагревателем, либо остается на месте. В последнем случае нагреватель сам движется по направлению детали. Такая ТВЧ закалка подходит для обработки плоских и цилиндрических деталей, поверхностей.

Тангенциальная непрерывно-последовательная ТВЧ закалка . Ее применяют при нагреве исключительно небольших цилиндрических деталей, которые прокручиваются единожды.

Вы хотите приобрести качественное оборудование для закалки? Тогда обращайтесь в научно-производственную компанию «Амбит». Мы гарантируем, что каждая выпущенная нами установка ТВЧ для закалки - надежна и высокотехнологична.

Индукционный нагрев различных резцов перед пайкой, закалкой,
установка индукционного нагрева IHM 15-8-50

Индукционная пайка, закалка (ремонт) дисковых пил,
установка индукционного нагрева IHM 15-8-50

Индукционный нагрев различных резцов перед пайкой, закалкой

Прочность элементов в особо ответственных стальных конструкциях во многом зависит от состояния узлов. Поверхность деталей играет не последнюю роль. Для придания ей необходимой твердости, стойкости или вязкости проводятся операции термической обработки. Упрочняют поверхность деталей различными методами. Один из них – закалка токами высокой частоты, то есть ТВЧ. Он относится к наиболее распространенным и очень производительным способом во время крупносерийного производства различных конструкционных элементов.

Подобная термообработка применяется как целиком к деталям, так и к отдельным их участкам. В этом случае целью является достижение определенных уровней прочности, тем самым повышая срок эксплуатации и эксплуатационные характеристики.

Технология используется для усиления узлов технологического оборудования и транспорта, а также при закаливании различного инструмента.

Сущность технологии

ТВЧ закалка – это улучшение прочностных характеристик детали за счет способности электрического тока (с переменной амплитудой) проникать в поверхность детали, подвергая ее нагреву. Глубина проникновения благодаря магнитному полю может быть различной. Одновременно с поверхностным нагревом и закаливанием сердцевина узла может быть не прогретой вовсе или лишь незначительно повысить свою температуру. Поверхностный слой обрабатываемого изделия образовывает необходимую толщину, достаточную для прохождения электрического тока. Данный слой представляет собой глубину проникновения электротока.

Эксперименты доказали, что увеличение частоты тока способствует уменьшению глубины проникновения . Данный факт открывает возможности для регулирования и получения деталей с минимальным закаленным слоем.

Термообработка ТВЧ осуществляется в специальных установках – генераторах, умножителях, преобразователях частоты, позволяющих осуществлять регулировку в необходимом диапазоне. Помимо частотных характеристик на конечную закалку оказывают влияние габариты и форма детали, материал изготовления и используемый индуктор.

Выявлена также следующая закономерность – чем меньше изделие и чем более простая у него форма, тем лучше проходит процесс закаливания. При этом также снижается общий расход электроэнергии установки.

Индуктор медный. На внутренней поверхности часто имеются дополнительные отверстия, предназначенные для подачи воды при охлаждении. В этом случае процесс сопровождается первичным нагревом и последующем охлаждении без подачи тока. Конфигурации индукторов различны. Выбираемое устройство непосредственно зависит от обрабатываемой заготовки. В некоторых аппаратах отсутствуют отверстия. В такой ситуации охлаждается деталь в особом закалочном баке.

Основным требованием к процессу ТВЧ закалки является сохранение постоянного зазора между индуктором и изделием. При сохранении заданного промежутка качество закаливания становится наиболее высоким.

Упрочнение может производится одним из способов :

  • Непрерывно-последовательный: деталь неподвижна, а индуктор движется вдоль ее оси.
  • Одновременный: изделие движется, а индуктор – наоборот.
  • Последовательный: происходит поочередная обработка различных частей.

Особенности индукционной установки

Установка для ТВЧ закалки является высокочастотным генератором совместно с индуктором. Обрабатываемое изделие располагается как в самом индукторе, так и рядом с ним. Он представляет собой катушку, на которой накручена трубочка из меди.

Переменный электрический ток при прохождении через индуктор создает электромагнитное поле, проникающее в заготовку. Оно провоцирует развитие вихревых токов (токов Фуко), которые проходят в структуру детали и повышают ее температуру.

Главная особенность технологии – проникновение вихревого тока в поверхностную структуру металла.

Повышение частоты открывает возможности для концентрации тепла на малом участке детали. Это увеличивает скорость поднятия температуры и может достигать до 100 – 200 градусов/сек. Степень твердости увеличивается до 4 единиц, что исключено во время объемного закаливания.

Индукционный нагрев – характеристики

Степень индукционного нагрева зависит от трех параметров – удельная мощность, время нагревания, частота электротока. Мощность определяет время, потраченное на нагрев детали. Соответственно при большем значении времени затрачивается меньше.

Время нагревания характеризуется общим объемом затраченного тепла и развиваемой температурой. Частота, как было сказано выше, определяет глубину проникновения токов и образованного закаливаемого слоя. Эти характеристики имеют обратную зависимость. При увеличении частоты, снижается объемная масса нагретого металла.

Именно данные 3 параметра позволяют в широком диапазоне регулировать степень твердости и глубину слоя, а также объем нагрева.

Практика показывает, что контролируются характеристики генераторной установки (значения напряжения, мощности и силы тока), а также время нагревания. Степень нагревания детали может контролироваться с помощью пирометра. Однако в основном непрерывный контроль температуры не требуется, т.к. существуют оптимальные режимы нагревания ТВЧ, обеспечивающие стабильное качество. Подходящий режим выбирается с учетом измененных электрических характеристик.

После закалки изделие отправляют в лабораторию на исследование. Изучается твердость, структура, глубина и плоскость распределенного закаливаемого слоя.

Поверхностная закалка ТВЧ сопровождается большим нагревом в сравнении с обычным процессом. Объясняется это следующим образом. В первую очередь, высокая скорость повышения температуры способствует увеличению критических точек. Во вторую, необходимо в короткий срок обеспечить завершение превращения перлита в аустенит.

Высокочастотное закаливание, в сравнении с обычным процессом, сопровождается более высоким нагревом. Однако металл не перегревается. Объясняется это тем, что зернистые элементы в стальной структуре не успевают разрастись за минимальное время. Кроме этого объемная закалка имеет прочность ниже до 2-3 единиц. После закалки ТВЧ деталь обладает большей износостойкостью и твердостью.

Как выбирается температура?

Соблюдение технологии должно сопровождаться правильным выбором температурного диапазона. В основную очередь все будет зависеть от обрабатываемого металла.

Сталь классифицируется на несколько типов:

  • Доэвтектоидная – содержание углерода до 0,8%;
  • Заэвтектоидная – более 0,8%.

Доэвтектоидная сталь нагревается до значения чуть большего, чем необходимо для преобразования перлита и феррита в аустенит. Диапазон от 800 до 850 градусов. После этого деталь с высокой скоростью охлаждается. После резкого остывания аустенит преобразовывается в мартенсит, имеющий высокую твердость и прочность. При небольшом времени выдержки получается аустенит мелкозернистой структуры, а также мелкоигольчатый мартенсит. Сталь получает высокую твердость и небольшую хрупкость.

Заэвтектоидная сталь нагревается меньше. Диапазон от 750 до 800 градусов. В этом случае производится неполная закалка. Объясняется это тем, что подобная температура позволяет сохранить в структуре некоторый объем цементита, имеющего более высокую твердость в сравнении с мартенситом. При быстром охлаждении аустенит преобразовывается в мартенсит. Цементит же сохраняется мелкими включениями. Зона также сохраняет не растворившийся полноценно углерод, превратившийся в твердый карбид.

Достоинства технологии

  • Контролирование режимов;
  • Замена легированной стали на углеродистую;
  • Равномерный процесс прогрева изделия;
  • Возможность не нагревать всю деталь полностью. Снижение энергопотребления;
  • Высокая получаемая прочность обработанной заготовки;
  • Не происходит процесс окисления, не сжигается углерод;
  • Нет микротрещин;
  • Отсутствуют коробленые точки;
  • Нагрев и закаливание определенных участков изделий;
  • Снижение временных затрат на процедуру;
  • Внедрение при изготовлении деталей ТВЧ установок в технологические линии.

Недостатки

Главным минусом рассматриваемой технологии является значительная цена установки. Именно по этой причине целесообразность применения оправдывается лишь на крупносерийном производстве и исключает возможность проведения работы своими руками в домашних условиях.

Более подробно работу и принцип действия установки изучите на представленных видео.