Использование беспилотных летающих аппаратов (бпла) для выполнения аэрофотосъемки. Применение перепиленных гражданских дронов для профессиональной геодезической аэрофотосъёмки местности Полевые работы аэрофотосъемки с использованием бпла

Первая часть статьи «БЕСПИЛОТНЫЕ ЛЕТАТЕЛЬНЫЕ АППАРАТЫ: ПРИМЕНЕНИЕ В ЦЕЛЯХ АЭРОФОТОСЪЕМКИ ДЛЯ КАРТОГРАФИРОВАНИЯ» касалась вопросов общейтеории: были рассмотрены существующие типы БПЛА, приведены пояснения основных терминов, связанных с их использованием, а также дан обзор нескольких моделей БПЛА, успешно применяемых при аэрофотосъемке в картографических целях.

Во второй части статьи будут рассмотрены особенности фотограмметрической обработки беспилотной аэросъемки, даны рекомендации по ее проведению и по установке основного и дополнительного оборудования на борт БПЛА для получения максимальной точности.

А.Ю. Сечин, М.А. Дракин, А.С. Киселева, «Ракурс», Москва, Россия, 2011.

Особенности данных аэросъемки с БПЛА

Аэрофотосъемка с БПЛА принципиально не отличается от съемки с «больших самолетов», но имеет определенные особенности, которые мы далее рассмотрим. Полет БПЛА, как правило, производится с крейсерской скоростью 70-110 км/ч (20-30 м/c) в диапазоне высот 300-1500 м. Для съемки обычно используются неметрические бытовые камеры с размером матрицы 10-20 мегапикселей. Фокусное расстояние камер обычно составляет около 50 мм (в 35 мм эквиваленте), что соответствует размеру пикселя на местности (GSD) от 7 до 35 см.

Часто снимки с БПЛА обрабатываются простыми нестрогими методами (аффинное преобразование снимков на плоскость). В результате, пользователь получает накидные монтажи, которые помимо низкой точности могут содержать разрывы контуров на стыках соседних снимков.

В данной статье при рассмотрении особенностей съемки с БПЛА и составлении рекомендаций по ее проведению мы будем исходить из строгой фотограмметрической обработки данных, в результате которой можно ожидать точность получаемых результатов (как правило, ортофотомозаики) порядка одного GSD. При значениях параметров съемки, указанных выше, результаты соответствуют по точности ортофотопланам масштабов от 1:500 до 1:2000 в зависимости от высоты съемки.

Для строгой фотограмметрической обработки данных аэросъемки и получения максимально точных результатов необходимо, чтобы снимки в одном маршруте имели тройное перекрытие, а перекрытие между снимками соседних маршрутов при площадной съемке составляло не менее 20%. На практике, при съемке с БПЛА эти параметры выдерживаются далеко не всегда. Полет БПЛА не устойчив, на него влияют порывы ветра, турбулентность и другие возмущающие факторы. Если съемку с обычных самолетов планируют с перекрытием вдоль маршрута 60%, а между маршрутами 20-30%, то проектировать съемку с БПЛА следует с перекрытием вдоль маршрутов 80%, а между маршрутами – 40%, чтобы, по возможности, исключить разрывы в фототриангуляционном блоке .

На БПЛА, как правило, устанавливаются цифровые камеры Canon. Это связано с легкостью электронного управления камерами этой фирмы. Использование бытовых камер имеет как преимущества (невысокая стоимость, легкость замены при «жесткой посадке»), так и недостатки.

Основным недостатком является то, что бытовые камеры изначально не откалиброваны – неизвестны их точные фокусные расстояния, главная точка, дисторсия. При этом нелинейные искажения оптики (дисторсия), допустимые при бытовой съемке, могут составлять до нескольких десятков пикселей, что на порядок снижает точность результатов обработки. Однако, такие камеры могут быть откалиброваны в лабораторных условиях, что позволяет получать точности обработки, практически такие же, как и для профессиональных малоформатных фотограмметрических камер.

Предпочтительней устанавливать на такие камеры объективы с фиксированным фокусным расстоянием. При съемке следует выставлять фокусировку на бесконечность и отключать функцию «автофокуса».

Второй недостаток используемых на БПЛА камер относится конкретно к камерам Canon– в них, в отличие от профессиональных фотограмметрических камер, используется щелевой затвор, в результате чего экспозиция разных частей изображения производится в разные моменты времени и соответствует разным положениям носителя. Так, если выдержка при съемке составляет 1/250 c, то при скорости БПЛА в 20 м/с смещение камеры при съемке кадра составляет 8 см, что сравнимо с разрешением съемки на малых высотах и вызывает дополнительную систематическую ошибку в снимке. Такие ошибки могут накапливаться в процессе фотограмметрического сгущения (уравнивании) при съемке протяженных территорий. Для того, чтобы уменьшить влияние этого эффекта и для ликвидации «смаза» снимков, следует осуществлять съемку с БПЛА с наименьшими возможными выдержками (не длиннее 1/250 c, максимальная выдержка зависит от высоты). Частично проблему щелевого затвора могли бы решить камеры с центральным затвором, имеющие сравнимое с камерами Canonкачество объектива и матриц. Тем не менее, чтобы избежать «смаза» выдержки все равно следует ограничивать.

Снимки цифровых камер, как любительских, так и профессиональных, имеют прямоугольную форму. «Выгоднее» располагать камеру так, чтобы длинная сторона снимка располагалась поперек полета – это позволяет снимать большую площадь при той же длине маршрута. Съемку следует производить с максимальным качеством – с наименьшим jpegсжатием или в RAW, если последнее возможно.

Современный уровень развития навигационных средств позволяет производить измерения элементов внешнего ориентирования (ЭВО) непосредственно в процессе съемки. Типичные точности таких измерений достигают единиц сантиметров по пространственным координатам X,Yи Zи 0.005 градуса по углам крена, тангажа и рысканья для самых точных систем ApplanixPOSAV, устанавливаемых на «большие самолеты». Часто этого достаточно, чтобы производить обработку без использования опорных точек. В любом случае, наличие таких данных значительно упрощает обработку и позволяет выполнять некоторые этапы обработки полностью в автоматическом режиме. Современные достижения микроэлектроники позволяют собрать механический (точнее MEMS– электронно-механический) гироскоп в корпусе размером в несколько мм, стоимостью от 250 $. Такие гироскопы не дают точность профессиональных, имеют значительный уход (порядка одного градуса за час) при эксплуатации, но существенно упрощают последующую обработку данных. При типовых поставках Птеро E4, Дозор 50 на борт могут быть установлены такие малогабаритные инерциальные системы - IMU(на Дозор-50 ставится IMUразработки ООО

«Транзаз Телематика») и высокоточные двухдиапазонные GPS (TOPCONeuro160 на Птеро-E4, встроенный ГЛОНАСС/GPS приемник на Дозор-50). Паспортная точность этих GPS приборов составляет 10 мм + 1,5 мм × B(B– удаление до базовой станции в км) в плане и 20 мм + 1,5 мм × Bпо высоте. К сожалению, обычно на борт БПЛА устанавливают болеедешевые GPSприемники и не устанавливают IMU датчики. Данные о центрах проекции снимков в телеметрической информации снимаются через протокол NMEAи имеют в таком случае точность до 20-30 м, а углы тангажа, крена и рысканья вычисляются через вектор скорости GPSизмерений. Точность угла рысканья в такой телеметрической информации невысокая и может превышать 10 градусов, а сами значения содержат систематические ошибки, что усложняет последующую обработку данных.

Если при съемке использовался двухдиапазонный GPSприемник в дифференциальном режиме (или PPPобработка данных GPS), то требуется минимальное число опорных точек для получения наиболее точных результатов обработки, обычно достаточно 1-2 точки на 100 снимков, в ряде случаев обработку можно проводить без опорных точек. В случае, когда нет точных центров проекции, требования к планово-высотному обоснованию стандартные: одна планово-высотная точка на 6-10 базисов съемки.

Специфика фотограмметрической обработки данных аэросъемки с БПЛА

Обработка аэрофотосъемки с БПЛА в цифровых фотограмметрических системах (ЦФС) в целом аналогична обработке аэрофотосъемки с «больших самолетов». Однако особенности данных с борта БПЛА часто не позволяют использовать автоматические процедуры стандартных пакетов – часть операций (например, расстановку связующих точек) приходится производить в ручном режиме. Ниже мы рассмотрим особенности обработки аэросъемки с БПЛА в ЦФС PHOTOMOD5.2. Именно в этой версии PHOTOMOD введены специальные функции для обработки таких данных, существенно упрощающие и автоматизирующие получение конечной продукции.

Как и при обработке других данных, сначала в ЦФС создается проект, в него вводятся снимки и телеметрическая информация. На основании данных о центрах проекции и углах производится создание накидного монтажа, разбивка по маршрутам. Снимки, попавшие на развороты БПЛА, удаляются в ручном режиме. Неточные угловые элементы внешнего ориентирования приводят к достаточно грубому накидному монтажу (Рис. 1):

Рис. 1. Накидной монтаж по телеметрической информации

Автоматический поиск связующих точек в таких случаях затруднен или требует значительного времени работы компьютера. Для уточнения накидного монтажа в таких случаях в ЦФС PHOTOMOD используется т.н. «автоматический накидной монтаж», который уточняет взаимное расположение снимков (Рис. 2).

Рис. 2. Накидной монтаж после автоматического уточнения

Как мы ранее отмечали, съемка с борта БПЛА производится с увеличенными перекрытиями. Нестабильность полета летательного аппарата иногда может привести к очень большим перекрытиям между соседними снимками, что вызывает сложности в стандартных фотограмметрических пакетах.

Рис. 3. «Перепутывание» снимков при маленьком базисе съемки

Разные углы и высоты съемки соседних кадров приводят к увеличению области поиска связующих точек и увеличению числа грубых ошибок по сравнению со стандартными аэрозалетами. После создания уточненного накидного монтажа выполняется процедура автоматического измерения связующих точек. На первых проходах накидной монтаж опять уточняется:

Рис. 4. Накидной монтаж после первых проходов автоматического измерения связующих точек

На следующих проходах производится доизмерение связующих точек. Несколько проходов необходимы в случае, когда телеметрическая информация не содержит всех углов ориентирования, или углы известны с точностью 10-30 градусов. Если же телеметрическая информация содержит угловые элементы ориентирования с точностью в несколько единиц градуса, то достаточно и одного прохода – надежность автоматических измерений в этом случае повышается. Для борьбы с возможными грубыми ошибками при автоматических измерениях в PHOTOMOD5.2 введено понятие т.н. «доверительной группы связующих точек», когда программа ищет наибольшее число связующих точек для стереопар с наименьшим поперечным параллаксом, остальные связующие точки, не попавшие в группу, считаются ошибочными.

После измерения связующих и опорных точек производится процедура уравнивания. В ЦФС PHOTOMODможно использовать начальное приближение для алгоритма уравнивания как по уточненной схеме блока, так и построенное другими методами. Начиная с версии 5.2 для уравнивания аэросъемки с БПЛА мы рекомендуем использовать новый режим – уравнивание 3D. При уравнивании в PHOTOMODи достаточном числе опорных точек можно использовать самокалибровку. Это дает возможность использования некалиброванных камер. Ожидаемая точность выходных результатов при строгой фотограмметрической обработке составляет приблизительно 1-2 GSDв плане и 2-4 GSDпо высоте. После фотограмметрического уравнивания, результаты которого и определяют точность выходных продуктов, производится построение рельефа (ЦМР) в автоматическом режиме. При необходимости, после уравнивания может быть сделана стереовекторизация – отрисовка в ручном режиме зданий, сооружений, мостов, дамб и других объектов. Построенный рельеф используется для ортотрансформирования снимков. На последнем этапе из ортотрансформированных снимков создается бесшовная мозаика – производится расчет линий порезов, выравнивание яркостей, стыковка контурных объектов. Самокалибровку можно включать и при отсутствии опорных точек, правда, в этом случае можно рассчитать только коэффициенты k1, k2 радиальной дисторсии. При использовании камер с щелевым затвором можно дополнительно включить расчет аффинных искажений. В случае стабильности углов ориентирования при съемке такая самокалибровка может повысить точность уравнивания.

Если используется некалиброванная камера и отсутствуют опорные точки, то можно говорить о точности в несколько десятков метров, которая будет определяться точностью

GPSцентров проекций и дисторсией объектива (до нескольких десятков пикселей). В таких случаях можно применять упрощенную автоматизированную последовательность обработки. Бесшовный накидной монтаж указанной точности при этом получается за счет трансформирования исходных снимков в модуле PHOTOMODGeoMosaic.В этом случае используются простейшие методы трансформирования, не учитывающие рельеф местности, а стыковка контуров осуществляется за счет автоматически рассчитываемых связующих точек вдоль автоматически построенных линий порезов.

Примеры фотограмметрической обработки данных аэросъемки с БПЛА

Рассмотрим несколько примеров обработки аэросъемки с БПЛА. Во всех примерах для обработки использовалась ЦФС PHOTOMOD. Отметим, что различными организациями в компанию «Ракурс» для тестирования было передано более 20 блоков аэросъемки с БПЛА. К сожалению, для многих блоков отсутствовали опорные точки и/или съемка была проведена неоткалиброванными камерами. В таких случаях было невозможно оценить точность конечных результатов обработки.

Первый блок, который мы рассмотрим, был снят с борта БПЛА ZALA421-04ф. Данные для исследований были любезно предоставлены ОАО «Газпром космические системы». Блок состоял из 26 маршрутов. Общее число снимков в блоке составило 595. Использовалась предварительно откалиброванная цифровая камера Canon EOS500D. Высота залета над местностью составила около 500 м, размер пиксела на местности приблизительно равен 8 см. На местности были измерены и промаркированы 25 опорных точек, точность координат опорных точек не превышала 10 см. Общий перепад высот местности протяженностью около 3-х километров достаточно большой ~ 70 метров.

Сначала этот же блок аэросъемки был обработан в автоматическом режиме по упрощенной схеме, без уравнивания и использования опорных точек. Привязка осуществлялась по центрам проекции, трансформирование снимков проводилось сразу в модуле GeoMosaicбез учета рельефа. Последующий контроль полученных «псевдо» ортофотопланов по опорным точкам показал расхождения на опорных точках, превышающие 17 м. Такая невысокая точность ортофотплана обусловлена как большим перепадом высот, так и неточностью измерений центров проекций в полете.

Затем блок был подвергнут строгой фотограмметрической обработке. При уравнивании три из измеренных опорных точек считались контрольными. Среднеквадратическая ошибка уравнивания составила по опорным точкам 15 см, 16 см, 12 см, по контрольным точкам 23 см, 29 см и 57 см. Расхождения на связующих точках составили 8 см, 14 см и 69 см. Общий вид блока представлен на следующем рисунке.

Рис. 5. Общий вид «блока 1»

В процессе уравнивания было обнаружено, что координаты центров проекций из телеметрической информации содержат систематическую ошибку, главная из компонент которой составляет 10,5 метра по высоте Z. Среднеквадратические ошибки на центрах проекции после вычитания систематической ошибки составили 84 см, 239 см и 75 см. Существенно большая ошибка по Y(вдоль полета), скорее всего, связана с неточным определением моментов съемки в телеметрии. Большие ошибки по Zна связующих точках возможно связаны с неточной калибровкой камеры и с накопленной ошибкой при съемке камерой с щелевым затвором. Наибольшие ошибки на связующих точках наблюдаются на краях и в углах снимков.

Рис. 6. Величины ошибок на связующих точках

Дальнейшая обработка блока проводилась по стандартной схеме. Был построен рельеф в автоматическом режиме и сделано ортотранформирование с учетом построенного рельефа. Фрагмент построенного ортофото приведен на следующем рисунке. При построении этого фрагмента специально не включалась функция выравнивания яркости для демонстрации совпадения контуров соседних снимков.

Рис. 7. Фрагмент ортофотоплана без выравнивания яркости

В апреле 2011 кафедрой фотограмметрии Московского государственного университета геодезии и картографии (МИИГАиК) были проведены исследования материалов аэрофотосъёмки, полученных с помощью БПЛА Птеро, с целью оценки качества аэросъёмочных работ и фотограмметрической обработки . Съемка выполнялась с высоты около 900 м над средней плоскостью снимаемой местности с борта БПЛА Птеро цифровой фотокомерой CanonEOS5D. Камера была предварительно откалибрована. Для оценки качества материалов использовался фрагмент блока, состоящий из 2-х маршрутов по 6 снимков в каждом. В качестве опорных использовались 14 точек, плановые координаты XYкоторых были сняты с планов масштаба 1:1000, а высота Zопределялась по материалам воздушного лазерного сканирования, выполненного с точностью около 20-30 см. После фотограмметрического уравнивания среднеквадратические погрешности координат на опорных точках составили по X, Yи Zсоответственно 20 см, 21 см и 50 см. Среднеквадратические погрешности координат связующих точек составили 6 см, 6 см, 15 см. Размер пиксела на местности для этого блока GSDсоставляет около 12 см. Общая схема блока показана на следующем рисунке.

Рис. 8. Схема «блока 2» с опорными и связующими точками

Вопросы метрологического обеспечения

В целом, использование БПЛА для аэросъемки и для получения материалов картографической точности показывает экономическую эффективность и является оперативным. Для широкого внедрения такой аэросъемки требуется координация усилий как производителей БПЛА, так и пользователей их эксплуатирующих, а также разработчиков цифровых фотограмметрических систем.

Одним из сдерживающих факторов внедрения БПЛА для решения перечисленных выше задач является отсутствие у большинства организаций практического опыта их использования, а также отсутствие теоретически обоснованных рекомендаций по выбору съемочной аппаратуры для БПЛА и параметров выполняемой с их помощью аэрофотосъемки.

Отметим здесь интересный проект МИИГАиК – с целью отработки и исследования технологий мониторинга и картографирования местности по материалам беспилотной аэрофотосъемки, начаты работы по созданию специализированного исследовательского полигона. Этот полигон, площадью около 50 кв. км, создается в Заокском районе Тульской области, на базе учебного геополигона МИИГАиК, расположенного в 110 км от Москвы.

Территория полигона представляет собой уникальное многообразие картографических объектов. На этой территории расположены разнообразные населенные пункты: поселок городского типа, деревни, дачные и коттеджные поселки; дорожная сеть в виде железных, шоссейных, проселочных и полевых дорог; линии электропередачи различного напряжения; трубопроводы. На территории полигона имеются лесные массивы, различные гидрографические объекты, многообразные формы рельефа, сельскохозяйственные угодья и производственные объекты.

С целью обеспечения отработки и исследования технологий, основанных на применении БПЛА, на территории полигона начаты работы по созданию высокоточной сети планово-высотных опознаков (в виде естественных контуров местности и маркировочных знаков); ведется топографическая наземная съемка характерных участков местности в масштабе 1: 500 и 1: 2000. На эту же территорию по материалам аэрофотосъемки и космическим снимкам высокого разрешения созданы ортофотопланы и цифровые модели местности. По мере поступления новых съемочных материалов эти работы предполагается выполнять в дежурном режиме.

Для оценки изобразительных свойств снимков, полученных с помощь БПЛА, на полигоне будут развернуты радиальные миры.

Первые испытания планируется провести в середине июля 2011 г. Планируется провести тестовую аэрофотосъемку территории полигона в различных масштабах с помощью отечественного БПЛА «ПТЕРО» с целью отработки и исследования фотограмметрической технологии создания карт различного масштаба по полученным материалам аэрофотосъемки. Фотограмметрическую обработку полученных снимков предполагается выполнить на цифровой фотограмметрической системе PHOTOMOD. В сентябре предполагается провести испытания БПЛА «Х100» бельгийской фирмы Gatewing и БПЛА «МИИГАиК Х8», разработанного в МИИГАиК.

Созданием полигона и проведением на нем испытаний БПЛА и технологий, основанных на их использовании, МИИГАиК намерен помочь потенциальным пользователям освоить и внедрить новые технологии, а разработчикам летательных аппаратов и съемочных систем адаптировать их к решению актуальных задач производства.

Использование БПЛА в качестве аэросъемочной платформы имеет большие перспективы при съемке небольших по протяженности площадных объектов и при съемке линейных объектов. Данные с БПЛА позволяют получать качественные картографические материалы (пространственные данные) при следующих условиях:

· выполнении определенных (вполне посильных) требований к съемочной аппаратуре и процессу съемки (гарантия достаточности перекрытий);

· строгой фотограмметрической обработке. Точность при этом возрастает в десятки раз и может составлять около GSD, как и для обычной аэросъемки и космических снимков.

Наши рекомендации для получения максимальной точности результатов съемки предназначены как для пользователей, эксплуатирующих БПЛА, так и для конструкторов, устанавливающих оборудование на беспилотники, и состоят в следующем.

· Использовать на БПЛА калиброванные камеры.

· Производить съемку с выдержкой не длиннее 1/250с.

· Использовать объективы с фиксированным фокусным расстоянием. Если это невозможно, следует фиксировать увеличение (Zoom). Съемка должна производиться с фокусировкой на бесконечность и с отключенным режимом автофокусировки.

· Проектировать съемку с увеличенными перекрытиями (80% вдоль, 40% поперек маршрута).

· Желательно использовать камеры с центральным затвором.

· Желательно использовать двухдиапазонные GPS приемники на борту и дифференциальный режим измерений.

· Желательно использование на борту IMU, пусть и не имеющего высокой точности.

Благодарности

Благодарим компании: «Беспилотные системы ЗАЛА АЭРО», ОАО «Газпром космические системы», «АФМ-Серверс», ООО «Геометр-Центр», НПИ и КЦ «Земинформ», ЗАО «Транзас», ЗАО «Лимб» за помощь в подготовке материала, предоставление данных и полезные обсуждения.

Литература

1. Чибуничев А.Г., Михайлов А.П., Говоров А.В. Калибровка цифровых фотокамер: Вторая научно-практическая конференция РОФДЗ. Тезисы докладов. М., 2001 г. с38-39.

2. Скубиев С.И., Научно-производственный институт земельно-информационных технологий Государственного университета по землеустройству «Земинформ» (Россия), Использование беспилотных летательных аппаратов для целей картографии. Тезисы XЮбилейной международной научно-технической конференции «От снимка к карте: цифровые фотограмметрические технологии». Гаета, Италия, 2010.

3. Результаты полевых исследований БПЛА «Птеро»

Нынешняя польза от использования беспилотных летающих аппаратов в строительной сфере и шоу бизнесе делает этот вид деятельности очень востребованным. В этой статье, будут затронуты основные направления применения аэрофотосъемки .









О тонкостях аэрофотосъемки

Применение БПЛА , стало доступно небольшим компаниям сравнительно недавно, всего четыре года назад, для проведения съемки с воздуха требовалось нанимать вертолет или дельтаплан, если объект был за городом. Это могли позволить себе далеко не все организации, но на сегодняшний день все изменилось. С появлением БПЛА китайского производства, стоимость проведения съемки с воздуха существенно изменилась. Это связано с тем, что с воздуха стала осуществляться с относительно недорогих радиоуправляемых коптеров . Естественно, на рынке сразу появились компании, которые предлагают услуги по фото и видеосъёмке. Условно можно выделить два направления съемки, с лёгкого квадракоптера и тяжёлого гексакоптера. (или октокоптера, отличие в количестве моторов). Маленькие квадракоптеры , чаще всего серии DJI Phantom, используют для аэросъемки отчетной направленности. В результате получаются фотографии разрежением 4000 пикселей по большей стороне или 12 мегапикселей.

Такие фотографии не подойдут для печати, но их вполне можно посмотреть на компьютере или презентации в хорошем качестве. Если аэрофотосъемка требуется не для маркетинговой продукции, требующей высокого качества, то этого варианта более чем достаточно.

В примере ниже аэрофото с квадракоптера Phantom 2 и камеры Go Pro 4.

Для более серьёзных съемок обычно применяют камеры Canon 5D Mark III с хорошими объективами, которые «летают» на тяжёлых коптерах типа DJI S1000. На фотографии ниже, можно взглянуть на оборудование для профессиональной аэросъемки, которое используется в специализированных компаниях.

Уровень детализации объектов на фото более высокий. Итоговые снимки получаются разращением 5600 по большей стороне, количество мегапикселей 23.4, количество пикселей на дюйм 300 и в RAW формате*. (RAW это данные с матрицы камеры без сжатия, даёт дополнительные преимущества при проведении съемки.).

Аэрофотосъемку с гексакоптера можно использовать в печатной продукции: делать аэрофото для рекламных щитов и другой наружной рекламы, для печати буклетов, при геодезической съемке. Этот вариант съемки, будет самым точным и выше в цене (обычно цена на съемку с Canon 5D Mark III выше в 3-4 раза). Есть возможность кадрировать изображение (обрезать лишнее) и более качественно обработать фотографию.

Аэросъемка в строительстве

Использование аэрофотосъемки в строительстве шаг к прогрессу и развитию в целом. Съемка в ходе строительства, аэросъемка для проектирования и кадастра, геологическая разведка, рекламные фото, все эти возможности, позволят людям в скором времени создавать необычные и качественные архитектурные единицы, включая ландшафтную архитектуру. Анализ местности с воздуха, позволяет проектировать в большем масштабе, что дает толчок к развитию продуманной инфраструктуры районов, парково-рекреационных зон и новых городов.


УДК: 528.71 А.С. Костюк

Западно-Сибирскй филиал «Госземкадастрсъемка» - ВИСХАГИ, Омск

РАСЧЕТ ПАРАМЕТРОВ И ОЦЕНКА КАЧЕСТВА АЭРОФОТОСЪЕМКИ С БПЛА

В статье рассмотрены особенности расчета параметров аэрофотосъемки с малых беспилотных летательных аппаратов (БПЛА). Изложен способ оперативной оценки качества аэрофотосъемки с БПЛА.

West-Siberian branch «Goszemkadastrsyomka» - VISHAGI 4 Prospect Mira, Omsk, 644080, Russian Federation

CALCULATION OF THE PARAMETERS AND EVALUATION OF QUALITY WITH UAV AERIAL PHOTOGRAPHY

The article describes the features of calculation of parameters from aerial surveys of small unmanned aerial vehicles (UAVs). Described method for rapid assessment of the quality of aerial photography from unmanned aircraft.

Проведение работ по инвентаризации земель и объектов недвижимости, подготовка документов для постановки на государственный кадастровый учёт и государственная регистрация прав подразумевает выполнение комплекса картографо-геодезических, землеустроительных и кадастровых работ. Для поддержания информации на современном уровне необходим системный мониторинг. Для локального обновления картографического материала интенсивно используемых земель целесообразно использовать беспилотно-пилотируемые летательные аппараты. В Западно-Сибирском филиале предприятия “Госземкадастрсъемка” - ВИСХАГИ разработано несколько летательных аппаратов и все они попадают в весовую категорию до 3,5 кг.

Несмотря на всю простоту любительской съемки с БПЛА, при проведении аэрофотосъемочных работ для целей картографирования возникает ряд проблем, связанных с выбором фотокамеры, устанавливаемой на летательный аппарат, расчетом параметров аэрофотосъемки и оперативной оценке качества материалов аэрофотосъемки.

Выбор фотокамер для целей аэрофотосъемки основан на анализе следующих характеристик: разрешающей способности снимков, физическом размере матрицы, величине угла захвата, веса камеры и её стоимости. Нами была разработана методика присвоения оценочных баллов по каждой характеристике фотоаппарата. Лучшим фотоаппаратом считался фотоаппарат, набравший большую сумму балов. Было исследовано более десяти цифровых камер подходящих для установки на БПЛА из модельного ряда весовой категории до 3,5 кг.

По результатам исследования, наилучшими для целей аэрофотосъемки признаны камеры Canon IXUS-980IS, Pentax Optio-A30 и Sony DSC-W300, их основные характеристики представлены в табл. 1.

Таблица 1 Основные характеристики выбранных фотокамер

Название фотокамеры Длина матрицы, пкс Ширина матрицы, пкс Размер матрицы, " f экв 35 мм кадру, мм Вес, г

Canon IXUS-980IS 4416 3312 1/1.7 36.0 160

Sony DSC-W300 4224 3168 1/1.7 35.0 156

Pentax OptioA30 3648 2736 1/1.8 38.0 150

В настоящее время на беспилотных летательных аппаратах ЗападноСибирского филиала “Госземкадастрсъемка” - ВИСХАГИ установлена фотокамера Pentax Optio-A30. Камера хорошо показала себя во время производственной и экспериментальной аэрофотосъемки. Постоянно развивающаяся технология аэрофотосъемки с БПЛА требует приобретения новых фотокамер и совершенствования методики их выбора.

Расчет параметров аэрофотосъемки изложен в соответствующих нормативных документах. Аэрофотосъемка с малых беспилотных летательных аппаратов имеет ряд особенностей. Превышение допустимых углов наклона снимков, несоблюдение прямолинейности траектории полета, для обеспечения необходимого перекрытия между снимками высокая частота фотографирования и как следствие избыток кадров. Нами была разработана методика расчета следующих параметров аэрофотосъемки с БПЛА: высоты фотографирования, расстояния между маршрутами и между центрами фотографирования на маршруте.

Высота аэрофотосъемки зависит от масштаба создаваемого фотоплана. Величина крайнего пикселя снимка на местности не должна превышать 0.07 мм в масштабе создаваемого фотоплана. Например при создании фотоплана

масштаба 1: 2000 величина пикселя на местности d не должна превышать 0.14 м. Расчет разрешающей способности снимка следует производить для пикселей наиболее удаленных от центра кадра. Схема связи размера крайнего пикселя снимка с местностью показана на рисунке.

На рисунке: f - фокусное расстояние камеры в эквиваленте для 35 мм кадра;

L - длина половины диагонали матрицы, для 35 мм кадра она составит 21.6 мм;

H - высота фотографирования во время АФС;

Рис. 1. Связь размера пикселя снимка с местностью

D - длина половины диагонали снимка на местности.

Из рисунка следует:

d ■ cos(у-Р)

S = ; ; (1) sin у

Hmx = S ■ cos Р; (2)

Расчет максимально допустимой высоты аэрофотосъемки выполняется по формуле (2), где угол в зависит от индивидуальных параметров используемой фотокамеры и может быть рассчитан исходя из величины фокусного расстояния эквивалентного 35 мм кадру.

В зависимости от точности GPS навигации и особенностей пилотирования БПЛА могут быть достигнуты следующие параметры выдерживания самолета на маршруте:

Поперечное смещение от оси маршрута ± 10 м;

Удержание БПЛА на запроектированной высоте ± 15 м;

Расстояние от запроектированного центра фотографирования до точки срабатывания затвора фотоаппарата ± 5 м;

Изменение угла крена БПЛА на маршруте между двумя снимками

Изменение угла тангажа БПЛА на маршруте между двумя снимками

Приведенные параметры полета БПЛА были получены в результате постобработки множества материалов производственной и экспериментальной аэрофотосъемки.

Для расчета расстояния между маршрутами обеспечивающего 30 % поперечное перекрытие при идеальных условиях по формуле (3) вычисляется половина поперечного угла захвата камеры, где Ln^epen - половина ширины 35 мм пленки и составляет 12 мм:

р" = arcctg (------); (3)

Высота полета с учетом погрешности барометрического датчика рассчитывается по формуле (4):

H = H - 20 м (4)

пол max ? V /

Половина ширины захвата местности камерой вычисляется по формуле (5):

D = Hпол ■ tgP"; (5)

Расстояние между маршрутами в идеальных условиях рассчитывается по формуле (6):

где к = 0,7, для обеспечения 30 % поперечного перекрытия снимков.

Для обеспечения надежного сплошного покрытия земной поверхности снимками необходимо учесть максимальные отклонения БПЛА от запроектированного маршрута. Минимальное значение половины ширины захвата местности во время аэрофотосъемки с учетом совокупности погрешностей навигационных данных и пилотирования летательного аппарата вычисляется по формуле (7):

Рш1п = (Нпоп -15м) щ(0- 5°) -10м; (7)

Предельное отклонение между двумя маршрутами составит:

8Р = 2 (Р - Этп); (8)

Расстояние между маршрутами с учетом поперечного смешения БПЛА относительно оси маршрута, удерживания высоты полета и углов наклона камеры, вычисляется по формуле (9):

К = К - §Р ■ (9)

попереч ид? V /

По формулам (1)-(9) вычисляется высота полета БПЛА для выбранных фотоаппаратов и расстояние между маршрутами при создании фотопланов масштаба 1: 2 000. Полученные данные представлены в табл. 2.

Таблица 2 Расчет высоты фотографирования и расстояния между

маршрутами

Название фотокамеры Hmax, м ^ м м Dmin, м м o" Ô Rпопереч, м

Canon IXUS-980IS 520 500 233 106 122 112

Sony DSC-W300 484 464 223 101 116 107

Pentax 0ptio-A30 467 447 198 86 110 87

Расстояние между центрами фотографирования на маршруте рассчитывается по аналогии с расстоянием между маршрутами. По формуле (3) вычисляется половина продольного угла захвата камеры, где L - половина длины 35 мм пленки и составляет 18 мм. Расстояние между центрами фотографирования в идеальных условиях рассчитывается по формуле (6), для обеспечения 60% продольного перекрытия снимков коэффициент к будет равен 0,4. По формуле (7) вычисляется минимальное значение половины длины захвата местности во время АФС. Предельное отклонение расстояния между снимками от рассчитанного вычисляется по формуле (8). Расстояние между центрами фотографирования с учетом погрешности навигационных координат, удерживания высоты полета и углов наклона камеры, рассчитывается по формуле (10):

Результаты полученные в ходе вычисления расстояния между центрами фотографирования вдоль маршрута приведены в табл. 3.

Таблица 3 Расчет расстояния между центрами фотографирования

Название фотокамеры ^ м Dmin, м SD, м Rпрод, м

Canon IXUS-980IS 200 207 87 113

Pentax 0ptio-A30 191 197 83 108

Sony DSC-W300 169 173 78 91

По данным табл. 2 и 3 на примере фотоаппарата Сапоп 1ХШ-98018 составлена карточка параметров аэрофотосъемки с БПЛА для целей получения фотоплана масштаба 1: 2 000._________________________________

Карточка параметров АФС с БПЛА для целей картографирования

Фотокамера: Canon IXUS-980IS

Масштаб АФС: 1: 2 000

Высота полета при АФС: 500 м

Расстояние между маршрутам: ll0 м

Расстояние между центрами фотографирования на маршруте: ll0 м

Допустимое отклонение от оси маршрута: ± l0 м

Допустимое отклонение от запроектированной высоты АФС: ± l5 м

Расстояние срабатывания затвора фотоаппарата от намеченных центров фотографирования вдоль оси маршрута: ± 5 м

Допустимое изменение угла крена БПЛА на маршруте между двумя снимками: 10о

Допустимое изменение угла тангажа БПЛА на маршруте между двумя снимками: 60

Расчет параметров аэрофотосъемки очень важный этап подготовительных работ. Правильно рассчитанные параметры полета позволяют увеличить площадь покрываемую аэрофотосъемкой за один полет и повысить качество материалов аэрофотосъемки.

Для оперативной оценки качества выполнения аэрофотосъемки на нашем предприятии было разработано и внедрено в производство программное обеспечение в виде приложения *.тЬх на базе Маріпіо. Программа позволяет проектировать маршруты согласно рассчитанным параметрам аэрофотосъемки. По полученным данным с борта летательного аппарата в реальном времени строится фактическая траектория полета. В момент прохождения БПЛА над точкой запроектированного центра фотографирования в автоматическом, либо ручном режиме подается команда на срабатывание затвора камеры. По высоте летательного аппарата и его

ориентации в пространстве в момент фотографирования строится условная рамка снимка, по которым можно оперативно оценить покрытие заданной территории аэрофотосъемкой, и, при необходимости, принять решение о повторном прохождении над проблемными участками.

Разработанная методика проектирования аэрофотосъемки с БПЛА позволила существенно сократить время выполнения аэрофотосъемочных работ и повысить качество материалов.

В одном мы уверены точно: высокая цена не всегда означает высокое качество.

Мы окунемся в индустрию и узнаем, как дроны покажут себя при съемке.

В этом исследовании используются термины и специфический жаргон, но они не помешают вам разобраться в сути. В данном исследовании была произведена обработка данных в DroneDeploy и получена высокая точность привязки - 9 см.


Описание

Топографическая съемка является неотъемлемой частью всех проектов в области землеустройства.

В этом примере мы рассмотрим участок земли, на котором должен был быть построен новый поселок. До начала работ было необходимо провести точную топографическую съемку по нескольким причинам:


  1. Осуществить начальное освоение земель, чтобы спроектировать сток воды для дренажа.
  2. Провести топографическую съемку поймы прилегающей реки для предотвращения возможных наводнений.

Если вы собираетесь открыть собственный отдел беспилотной съемки, готовьтесь к тому, что он станет объектом крупных инвестиций, и в итоге времени на проект может быть потрачено больше.

Геодезия 101

Для традиционной топографической съемки требуется сбор координат точек в заранее определенной сетке. В этом случае использовалась сетка размером 150х150 см:

Измерения производились каждые 150 сантиметров, на каждом перекрестке:


Всего на площади съемки 34,5 Га было собрано 1632 координаты.

Без дрона, снимающего со скоростью 20 точек/час (1 точка, каждые 3 минуты), сбор данных занял бы приблизительно 82 часа.


82 часа традиционной съемки означают, что инженер вынужден ждать как минимум неделю, чтобы приступить к обработке данных. Далее понадобится еще 3-4 дня, прежде чем работа будет сделана.

Проведя ту же съемку с использованием БПЛА, полевая команда смогла предоставить разработчику более быстрый вариант обзора.

Прежде всего, не нужно было собирать 1600 точек по всей площади. Вместо этого потребовалась съемка всего 10 наземных меток, расположенных в зоне обзора:

Для более крупных проектов Наземные опорные точки (GCP) лучше расставить по сетке.

10 наземных меток или 1632 точки:

10 опорных меток могут быть сделаны за 1-2 часа.

Те, кто знаком с фотограмметрией, знают, что точки, собранные с поверхности воды - неприемлемы для использования в подобных съемках.

Завершив сбор GCP, были собраны точки традиционным методом в участках со стоячей водой - комбинация двух методов, описанных выше.

Конечные собранные точки:


В итоге мы получили 117 точек (10 GCP + 107 на участках со стоячей водой).

Время на съемку:

Теоретически: 10 наземных меток + сбор точек = 1-2 часа

Фактически: 117 точек (10 GCP + 107 на участках со стоячей водой) при скорости сбора 20 точек / час = 5,85 часа

Традиционный метод: 1,632 точки при скорости сбора 20 точек / час = 81,6 часа



В течение часа были завершены все действия с БПЛА, включая сборку, предполетные проверки, запуск, посадку, разборку и первоначальную сшивку карты.


Таким образом мы получили:

БПЛА (1 час) + сбор точек (5,8 часа) =

Общее время полевых работ: 6,8 часа

Сравнение:

34,5 Га/ полевые работы с использованием БПЛА = 6,8 часа

34,5 Га/ полевые работы по традиционному методу = 81,6 часа

Общая экономия: 74,8 часа

Анализ данных

После проведения полевых работ, полученные данные требуют тщательной обработки. Сначала обрабатываются наземные метки, при этом при этом их позиция должна быть полностью скорректирована.

Далее, скорректированные точки (файл.las) должны быть экспортированы для создания основы топографических данных. Однако, большое количество точек в файле.las означает, что начальные топографические контуры выходят довольно грубыми:


Контуры должны быть сглажены, чтобы впоследствии создать согласованную линию, не теряя точность. В ином случае полученные данные - непригодны.

После 2 дней дополнительной обработки, результирующие топографические контуры стали точными в пределах 9 сантиметров, как по горизонтали (X, Y), так и по вертикали (Z):





Общие сроки выполнения проекта:

Метод с использованием БПЛА::

Полевые работы (6.8 часов) + обработка данных (24 часа) =

30,8 часов (около 4 дней)

Обычный метод:

Полевые работы (81,6 часов) + Обработка данных (24 часа)=

105,6 часов (около 13 дней)



Используя технологию с использованием беспилотника, инженер получил окончательный топографический обзор примерно за 75 часов

По полученным данным выяснилось, что:

1. Требуется дополнительное освоение земель, чтобы построить сточный дренаж в низколежащих районах, где вода удерживается.

2. Работники теперь смогут эффективно прогнозировать и планировать даты строительства дорог, домов и т.д.. - что поможет выполнять работы точно в срок.

3. Инженер узнал о недорогой и рентабельной съемке с БПЛА и планирует снова использовать этот метод для проведения окончательного «встроенного» топографического исследования в ближайшие недели.

Здесь Вы можете больше и лучшие модели беспилотников.

  • Какими бывают беспилотники?
  • Какой БПЛА подойдет для решения ваших задач?
  • Чем отличаются разные типы БПЛА друг от друга?

Возможности применения БПЛА сейчас очень широки: от видеонаблюдения с воздуха и художественных съемок, до инспектирования индустриальных объектов и картографирования. Кроме того, беспилотники часто находят применение при решении нетривиальных задач, таких как наблюдение за дикими животными в естественной среде обитания, исследования вулканов или ледников, проведение поисково-спасательных операций и многих других. БПЛА классифицируются в зависимости от конструкции, которая в свою очередь влияет на их летные характеристики.

На какие характеристики БПЛА стоит обратить внимание при выборе

При выборе наиболее подходящего типа БПЛА, главное определиться какие задачи вы собираетесь решать с помощью беспилотника, что вам нужно: скорость и большой радиус действия или маневренность и точность. Когда принято решение о том, какой тип БПЛА вам подходит, остальные критерии выбора зависят от вида работ, для которых вы приобретаете беспилотник. Давайте рассмотрим несколько основных характеристик, на которые следует обратить внимание если вы планируете купить БПЛА.

Это одна из ключевых характеристик беспилотных летательных аппаратов, именно от нее зависит, какую площадь Вы сможете отснять за один вылет, а значит и экономическая эффективность работ. У моделей одного класса часто указана примерно одинаковая продолжительность полета. Важно понимать, как выполнена данная оценка. Обычно, указывается максимальное время полета при наиболее благоприятных условиях (полный штиль, температура +20 °C). Некоторые компании, чтобы привлечь клиентов, публикуют время полета без полезной нагрузки (камеры). После установки полезной нагрузки, время полета таких БПЛА может сократиться до 50%. Поэтому перед покупкой лучше всего запросить у производителя демонстрацию беспилотника, чтобы точно убедиться, сколько он может находиться в воздухе. Время полета стоит рассматривать вместе с грузоподъемностью и взлетной массой. От грузоподъемности зависит возможность установки различной полезной нагрузки и дополнительного оборудования. Масса аппарата влияет на стабильность БПЛА в воздухе, поэтому, чем он тяжелее, тем стабильнее его траектория и выше качество получаемых снимков.

БПЛА Геоскан летают долго

При создании беспилотников Геоскан наши инженеры стремятся к достижению рекордной длительности полета. Так, квадрокоптер Геоскан 401, не имеющий аналогов в России, может находиться в воздухе до 60 минут. Геоскан 201 – беспилотник самолетного типа, способен летать до 180 минут, снимая до 22 км2 за один вылет.

На беспилотник можно устанавливать разные типы полезной нагрузки: фото или видео камеру, тепловизор, магнитометр, газоанализатор или лазерный сканер. Тип полезной нагрузки, как и тип БПЛА следует выбирать исходя из задач и того, какие данные вы хотите получить. Для топографических, геодезических и землеустроительных работ материалы съемки должны соответствовать нормативной документации. Чтобы достичь нужного качества, необходимо использовать высокоточные ГНСС приемники, снимать на камеры с большой матрицей и центральным затвором. Если не требуется высокая точность, можно использовать менее дорогие модели камер и обойтись без высокоточного навигационного оборудования.

Многие БПЛА могут поставляться с разной полезной нагрузкой, но не все они поддерживают её смену оператором. Если Вы выбираете БПЛА со сменной полезной нагрузкой, убедитесь, что для замены не требуются дополнительные инструменты, а электроника автоматически определяет тип полезной нагрузки и может ей управлять без дополнительной настройки или перепрошивки.

Если Вы выбираете беспилотник для сельского хозяйства, то Вам потребуется камера, способная снимать в ближнем инфракрасном диапазоне. Это нужно для расчета индексов состояния растительности, например NDVI. Еще один популярный тип полезной нагрузки это тепловизор. Он позволяет получать фото и видео изображение в тепловом диапазоне. Это может быть полезно для поиска утечек на теплосетях, определения неисправностей высоковольтных линий или выявления точек сброса сточных вод.

Полезные нагрузки для БПЛА Геоскан

Для БПЛА Геоскан представлен ряд полезных нагрузок, способных решать множество задач. Это и камеры для съемки в видимом диапазоне, и мультиспектральные камеры, и гиростабилизированные платформы с видеокамерой или тепловизором, и специальные решения для съемки панорам, и даже FullHD видеоканал. Если вы не найдете у нас подходящей полезной нагрузки, то мы всегда готовы сконструировать и изготовить её специально для вас.

Очень важно, чтобы БПЛА был надежен, портативен и не требовал длительной подготовки к старту. Надежность прежде всего определяется используемыми материалами. Они должны быть легкими и достаточно прочными, чтобы выдержать полетные нагрузки и, что важнее - нагрузки во время приземления.

Композитные материалы обеспечивают необходимую жесткость и прочность, но могут быть недостаточно гибкими и устойчивыми к ударным нагрузкам. Полимерные материалы способны выдерживать удары, не ломаться при деформации и сохранять форму, но не способны обеспечить жесткость конструкции.Поэтому наиболее оптимальным является совместное использование полимеров и композитных материалов.

Портативность БПЛА достигается такими решениями, как складная рама или модульная конструкция. Удобнее всего те беспилотники, которые можно поместить в прочный транспортировочный кейс и перевозить в багажнике автомобиля. Время подготовки беспилотника к полету одним оператором не должно превышать нескольких минут.

БПЛА Геоскан надежны

Мы первыми в России создали серию со съемными крыльями из вспененного полипропилена. Это делает их ударостойкими при посадках и упрощает ремонт в полевых условиях. Легкая и жесткая рама квадрокоптера сделана из углепластика. Она способна выдержать серьезные нагрузки и жесткие условия эксплуатации. При этом особый механизм сложения позволяет достичь максимальной компактности при транспортировке.

У БПЛА самолетного типа существует два способа старта - с рук и с катапульты, и два способа посадки - с парашютом и на корпус. Запуск с катапульты справедливо считается самым безопасным для оператора, а посадка на парашюте самой щадящей для беспилотника. У БПЛА мультироторного типа главной особенностью является вертикальный взлет и посадка. Это позволяет им взлетать и садиться, используя любую относительно ровную поверхность.

Безопасность оператора, людей и имущества, над которыми выполняются полеты, должна учитываться при выборе БПЛА. Лучше всего выбирать беспилотники с продуманным руководством по применению и встроенными функциями обеспечения безопасности. Среди таких функций можно назвать систему оповещения об уровне заряда батареи и качестве радиосвязи, автоматическую проверку полетного задания на выполнимость и автоматический возврат в точку старта при потере связи или критическом разряде батареи.

Еще одна важная функция, это возможность задать максимальное удаление от точки старта. Она позволяет создать виртуальный периметр, за который БПЛА не сможет вылететь. Это обеспечит безопасность имущества и людей на территориях, прилегающих к месту съемок. Наличие функций обеспечения безопасности позволит значительно снизить риски при эксплуатации беспилотных летательных аппаратов.

БПЛА Геоскан безопасны и удобны

Все самолетные беспилотники Геоскан взлетают с катапульты и садятся на парашюте, обеспечивая безопасность оператора и сохранность БПЛА. Наш автопилот и наземная станция управления поддерживают перечисленные выше функции обеспечения отказоустойчивости. Это все делает БПЛА Геоскан одними из самых безопасных и удобных для использования.

Еще одна важная характеристика БПЛА это погодные условия, при которых можно выполнять полеты, а также, получать качественные результаты съемки. Скорость ветра, осадки и температура воздуха могут значительно ограничить ваши возможности, если купленный беспилотник рассчитан только на полеты в условиях близких к идеальным.

Для серьезной работы следует выбирать профессиональную технику, предназначенную для применения в широком диапазоне температур и способную выдерживать значительную скорость ветра.

А если вы планируете использовать беспилотник в суровых условиях, например, высоко в горах, при очень низких или высоких температурах, то, скорее всего вам понадобится специально адаптированная под эти условия модель БПЛА.

Где могут летать БПЛА Геоскан

Наша техника рассчитана на работу при температуре от -20 °С до +40 °С. Максимальная скорость ветра, при которой можно летать: 12м/с. Именно поэтому, у нас за плечами по всей России, а также в Монголии, Казахстане, Греции и Мексике.

Важнейшей частью БПЛА является наземная станция управления (НСУ). Её функциональность во многом определяет возможности самого беспилотника.

В первую очередь НСУ должна предоставлять удобные инструменты для создания полетного задания. Маршрут полета для аэрофотосъемки должен создаваться автоматически, для указанной пользователем области съемки. Кроме того, должна быть возможность задать требуемое разрешение и процент перекрытия снимков, скорость полета и точку посадки. Если НСУ не обладает таким функционалом, нормально выполнить аэрофотосъемку будет практически невозможно.

Между тем, наземная станция управления нужна не только для создания полетного задания, но и для контроля БПЛА во время полета. С помощью НСУ оператор может следить за выполнением полетного задания, воспользоваться возможностью полета по заданным точкам или управлять полезной нагрузкой, а при необходимости отменить миссию. Кроме того, многие БПЛА для видеонаблюдения транслируют изображение камеры на экран НСУ в реальном времени.

НСУ Геоскан

С НСУ Геоскан вы сможете контролировать пространственное разрешение снимков, процент перекрытия, скорость полета и другие важные параметры съемки. Система автоматически проверит созданный план полета на выполнимость, и если нужно, предложит разделить его на несколько частей. Также, вы сможете видеть положение, траекторию и телеметрию БПЛА в реальном времени и полностью контролировать его на всех стадиях полета.

Даже самые детальные и качественные аэрофотоснимки останутся всего лишь красивыми изображениями без фотограмметрической обработки. Чтобы получить цифровую модель рельефа, 3D облако точек и ортофотоплан, вам понадобится специализированное программное обеспечение. Существуют различные программные продукты для работы с материалами съемки с БПЛА, все они предоставляют примерно одинаковый набор выходных данных. Однако скорость обработки и качество результатов может значительно отличаться. Чтобы избежать разочарования от ортофотоплана неудовлетворительного вида и грубой 3D модели, лучше использовать проверенное, хорошо зарекомендовавшее себя программное обеспечение.

Для точного определения пространственного положения снимков, используются координаты центров фотографирования, записанные навигационным оборудованием БПЛА. Поэтому стоит обратить внимание, поддерживает ли фотограмметрическое ПО импорт этих данных с вашего беспилотника. Идеальный вариант, это когда БПЛА и ПО для фотограмметрической обработки изначально создавались для совместной работы и интегрированы в единый рабочий процесс.

ПО Геоскан

В комплект поставки БПЛА Геоскан входит программа профессиональной фотограмметрической обработки снимков и создания 3D моделей . Кроме того, мы предлагаем трехмерную для анализа и визуализации полученных данных. Не нужно быть экспертом в ГИС и фотограмметрии, чтобы пользоваться комплексами Геоскан. Наш софт возьмет все сложности обработки на себя, предоставив вам удобные инструменты измерения и анализа.

Немаловажным фактором при выборе БПЛА является его цена. Естественно, что более привлекательными кажутся модели, цена которых ниже. Но не стоит рассматривать стоимость беспилотника отдельно от перечисленных выше характеристик.

Следует обратить особое внимание на то, что именно вы получаете за ваши деньги. Предлагает ли производитель обучение, техническую поддержку и гарантию? Входит ли фотограмметрическое ПО в комплект, или его придется покупать отдельно?

Помните также и о затратах на эксплуатацию и ремонт. С этой точки зрения выгоднее приобретать модульные аппараты, поскольку заменить или отремонтировать отдельную его часть достаточно просто и недорого. В случае цельнокорпусного решения придется отправлять на ремонт весь БПЛА, что повлечет за собой дополнительные расходы.

Сравнивая цены на беспилотники, стоит сравнить их ремонтопригодность, наличие запчастей и заявленный ресурс комплектующих. Если невозможно выполнить мелкий ремонт своими силами прямо в поле, то небольшая поломка может сорвать съемочный день. А это невыполненная работа и потеря денег из-за простоя оборудования.

Что входит в стоимость комплексов Геоскан

Покупая у нас съемочный комплекс, вы получаете все, что нужно для аэросъемки: БПЛА, НСУ, кейсы, зарядное устройство, набор ЗИП, ПО. В стоимость комплекса также входит индивидуальное обучение работе с БПЛА и софтом фотограмметрической обработки, после которого сотрудник сможет сразу приступать к работе. На все поставки действует гарантия

Заключение

Для того чтобы выбрать беспилотник, который окупится и принесет прибыль, убедитесь в качестве получаемых результатов, надежности и производительности. Идеальный БПЛА должен быть простым в использовании, портативным и обеспечивать быструю подготовку к старту. Он должен предлагать выбор нескольких видов полезных нагрузок, обладать интуитивно понятным управлением и обеспечивать интеграцию с профессиональным фотограмметрическим программным обеспечением.