Генетическое картирование принципы и методы генетического картирования. Современные методы картирования геномов. Интегральный интеллект: картирование паттернов человеческого улья

Slide 1

Выполнила: Голубева Ю.В. 410гр

Slide 2

Одна из основных задач современной генетики
заключается в выяснении природы комплексных
признаков, к которым в частности относятся
многие распространенные болезни человека и
характеристики продуктивности
сельскохозяйственных животных. Стартовым
этапом на пути решения этого вопроса
является

Slide 3

Картирование генов -

Slide 4

Стратегические подходы
к картированию геномов

Slide 5

Стратегия прямой
генетики

Различия во времени появления,
необходимой методической базой и
спектре возможностей. Функция гена
известна хотя бы частично.

Slide 6

Функциональное
картирование
 Основа - наличие некоторой информации о
биохимическом полиморфизме, лежащем в
основе того или иного наследственного
признака.
 начинается с выделения в чистом виде
белкового продукта гена.
 к нему по аминокислотной последовательности
подбирают вырожденные праймеры

 проводят ПЦР-скрининг

Slide 7

Большинство генов, функция которых
была известна, уже клонированы и
локализованы.

Slide 8

Для большинства генов, которые
были локализованы, характерны
структурные аномалии (как
правило, это гены, ответственные за
наследственные заболевания
человека), что существенно
облегчает заключительную стадию
поиска гена - выделение и
локализацию гена.

Slide 9

Кандидатное
картирование
информация о функциональном
изменении недостаточно полна, чтобы
точно указать ген
Информации достаточна для того,
чтобы выдвинуть предположения о
возможных кандидатах либо по их
функции, либо по положению на
хромосоме

Slide 10

Общее:
при функциональном, и при
кандидатном подходе клонирование
гена, как правило, предшествует его
точной локализации в геноме

локализовать ген означает пройти путь
от его функции к локализации на
хромосоме (позиции)

Slide 11

Стратегия обратной
генетики

От хромосомной карты к функции
гена. Возникло благодаря появление в
конце 80-х годов множества
высокополиморфных ДНК-маркеров

Slide 12

Позиционное
картирование
локализация гена при отсутствии всякой
функциональной информации о нем
место гена на карте устанавливают по
результатам анализа его сцепления с
ранее локализованными генетическими
маркерами, далее исследуется уже
область генома рядом с маркером

Slide 13

Генетический маркёр
(genetic marker)
Ген, детерминирующий
отчетливо выраженный
фенотипический признак,
используемый для
генетического картирования
и индивидуальной
идентификации организмов
или клеток. Также в качестве
генетических маркеров
могут служить целые
(маркерные) хромосомы.

Slide 14

Минусы
ограничением позиционного
подхода является низкая
разрешающая способность
генетических карт - интервал между
двумя соседними маркерами, в
котором локализован ген, может
оказаться слишком велик и
недоступен физическому
картированию.

Slide 15

Картирование генов –
виды
Физическое картирование
Генетическое картирование
Цитогенетическое(цитологическое)
картирование

Slide 16

Физическое
картирование
обширная группа методов, позволяющая строить
карты генома (обычно их называют физическими)
высокого уровня разрешения и определять
расстояния между локализуемыми нуклеотидными
последовательностями с точностью от нескольких
десятков тысяч п.н. до одной нуклеотидной пары.

Пример: картирование
генов с помощью
хромосомных мутаций

Slide 17

Типы физического
картирования
рестрикционное картирование
RH-картирование
клонирование в YAC (от англ. yeast artificial
chromosome)
BAC (от англ. bacterial artificial
chromosome) в космидах, плазмидах и
других векторах и контиг-картирование на
их основе
секвенирование ДНК

Slide 18

В том случае, когда известна
последовательность ДНК интересующего
локуса, эту последовательность можно
использовать для гибридизации с
хромосомами in situ, и место гибридизации
будет однозначно указывать на локализацию
локуса в определенном районе определенной
же хромосомы

Slide 19

Генетическое
картирование
картирование, основанное
на методах классической
генетики - определении
групп сцепления, частоты
рекомбинации и
построении генетических
карт, где единицей
измерения служат
проценты рекомбинации

Slide 20

Первый ген человека
был локализован на
Х-хромосоме в 1911
г.

Первый аутосомный
ген - только в 1968 г

Slide 21

Генетическая карта
(genetic map
Схема взаимного
расположения генов на
хромосоме (в группе
сцепления) и их
распределения по
разным хромосомам,
как правило,
включающая данные об
относительном
удалении генов друг от
друга (генетические
расстояния).

Slide 22

Генетическая карта
американской норки
включает 127 генов
(черный текст) и 39
микросателлитных
последовательностей
(красным текст).
Разным цветом
выделены районы
хромосом норки
гомологичные
хромосомным.

Slide 23

Преимущества
большое число консервативных групп
сцепления
создание банков клеточных культур
для локализации вновь возникшей
мутации к настоящему моменту есть
набор маркерных генов для каждой
хромосомы.

Slide 24

Построение
генетической карты
Шаг 1: формирование групп
сцепления генов и исследование их
взаимного расположения(Скрещивания
проводятся до тех пор, пока не удастся выявить
сцепленное наследование анализируемой
мутации с маркерными мутациями какой-либо
хромосомы)

Шаг 2: подсчитывание расстояния
между исследуемым геном и уже
известными маркерными генами

Slide 25

Единицы измерения
Генетическое расстояние между линейно
расположенными генами, выраженно в процентах
рекомбинации -

Два гена на хромосоме
находятся на расстоянии 1
сМ, если вероятность
рекомбинации между ними
в процессе мейоза
составляет 1%.

Классический пример Моргана –
расстояния между генами
дрозофилы

Slide 26

4 степени надежности
локализации данного гена
подтвержденная (установлена в двух и
более независимых лабораториях или на
материале двух и более независимых тестобъектов),
предварительная (1 лаборатория или 1
анализируемая семья),
противоречивая (несовпадение данных
разных исследователей),
сомнительная (не уточненные
окончательно данные одной лаборатории)

Slide 27

Минусы:
частота рекомбинации в
разных точках генома
различна, и расстояние
может существенно
варьировать

Необходим
тщательный
анализ
родословной
(если
картируется ген
заболевания)

в результате карты
сцеплений не отражают
реальных физических
расстояний между
маркерами и генами
на хромосомах.

Slide 28

Цитогенетическое
картирование
осуществляется с применением
методов цитогенетики, когда для
локализации каких-либо
нуклеотидных
последовательностей и
определения их взаимного
расположения используются
цитологические препараты

Slide 29

Цитологические карты
Метод цитологических карт основан на
использовании хромосомных перестроек –
перекрывающихся делеций.

При облучении и действии других
мутагенов в хромосомах часто
наблюдаются потери (делеции)
или вставки (дупликации)
небольших фрагментов,
сравнимых по величине с одним
или несколькими локусами.

Slide 30

Принципы:
Используются гетерозиготы по хромосомам, одна из которых
будет нести группу следующих друг за другом доминантных
аллелей, а гомологичная ей - группу рецессивных аллелей тех же
генов.
Если в хромосоме с доминантными генами произошла утрата
отдельных генов, например DE, то у гетерозиготы ABC/abcde будут
проявляться рецессивные признаки de. На этом принципе основан
метод перекрывающихся делеции, используемый при построении
цитологических карт.

Slide 31

Методы
дифференциального
окрашивания позволяют
идентифицировать на
препарате как отдельную
хромосому, так и любой
участок хромосомы

Разработанный на дрозофиле
специальный метод
перекрывающихся делеций был
использован для
цитологического картирования
генов у представителей многих
видов.

Slide 32

Хромосомные комплексы китайского хомячка
(А), мыши (Б) и их соматического гибрида (В)

Slide 33

Сравнение генетических и
цитологических карт хромосом
показывает их соответствие:
чем больший процент
кроссинговера разделяет пару
генов, тем больше и физическое
расстояние между ними.

Slide 34

Запись локализации
гена
Согласно официально утвержденной номенклатуре
(ISCN,1978), каждая хромосома человека после
дифференциальной окраски может быть разделена на
, нумерация которых начинается от
центромеры вверх (
), либо вниз
).
в каждом
участке тоже нумеруются в аналогичном порядке. Крупные
полосы разделяются на более мелкие

Slide 35

Slide 36

Алгоритм решения
задач на картирование
генов

Slide 37

Пример:
Составьте карту хромосомы,
содержащую гены, если
частота кроссинговера между
генами и равна 2,5%, и -
3,7%, и -6%, и - 2,8%, и -
6,2%, и - 15%, и - 8,8%

Slide 38

Slide 39

Используемая
литература
Э. Р. Рахманалиев, Е. А. Климов, Г. Е. Сулимова МЕТОДЫ
КАРТИРОВАНИЯ ГЕНОМОВ МЛЕКОПИТАЮЩИХ.
КАРТИРОВАНИЕ С ИСПОЛЬЗОВАНИЕМ РАДИАЦИОННЫХ
ГИБРИДОВ (RH КАРТИРОВАНИЕ)
Аксенович Т.И. Проблемы картирования QTL (Институт
цитологии и генетики СО РАН, Новосибирск)
Мяндлина Г.И. Молекулярные основы медицинской
генетики(кафедра биологии и общей генетики,
медицинского факультета РУДН)
В.И. Иванов Генетика Учебник для вузов, 2006

Генетические и физические карты По общепринятой классификации методы картирования геномов подразделяют на две категории: p Генетическое картирование p Физическое картирование 2

Составление генетических карт p p Маркёры – позиции каких-либо отличительных признаков. В качестве маркёров на протяжении десятилетий использовались гены, определяющие легко различимые фенотипы. Для более сложных карт использовались в качестве фенотипических признаков организма его биохимические особенности. Карта, основанная на генах, не может быть очень подробной. Также только часть всего числа генов существует в удобно различимых аллельных формах. 3

ДНК-маркёры ДНК–маркёры – нанесённые на карту особенности, которые не являются генами. Всякий пригодный ДНК–маркёр должен иметь два аллеля, как и ген–маркёр. Этому требованию удовлетворяют три типа особенностей последовательности ДНК: -Полиморфизмы длины фрагментов рестрикции (RFLP); -Полиморфизмы длины простых последовательностей (SSLP); -Полиморфизмы отдельных нуклеотидов (SNP). 4

1 ДНК-маркёр. Полиморфизмы длины рестриктов RFLP – первый тип ДНК-маркёров, который был полностью изучен. Ферменты рестрикции разрезают ДНК в определённых сайтах узнавания. Эта специфичность означает, что обработка молекулы ДНК ферментом рестрикции должна производить один и тот же набор фрагментов. С молекулами геномной ДНК так происходит не всегда, так как некоторые участки рестрикции полиморфны и существуют в виде двух аллелей: один показывает правильную последовательность для участка рестрикции и потому разрезается ферментом при обработке ДНК, а второй аллель несёт видоизменение последовательности, так что участок рестрикции уже не опознаётся. В результате этого два смежных фрагмента 5 рестрикции остаются связанными вместе, что

Визуализация RFLP 2. ПЦР используется гораздо чаще. Затравки для ПЦР разрабатываются таким образом, чтобы они отжигались к обеим сторонам полиморфного участка, и RFLP типизируется путём обработки размноженного фрагмента ферментом рестрикции и последующего пробега образца в агарозном геле. 8

2 ДНК-маркёр. Полиморфизмы длины простых последовательностей SSLP – множества повторных последовательностей, которые показывают изменения длины; различные аллели содержат разное число повторных единиц. Существуют SSLP двух типов: минисателлиты и микросателлиты. Два варианта некоторого STR (микросателлита) с повторяющейся последовательностью GA 9

Типы SSLP Минисателлиты (переменное число тандемных повторений, или VNTR). Повторная единица может иметь длину до 25 п. н. 2. Микросателлиты (простые тандемные повторения, или STR). Повторяющийся элемент – 13 п. н. или меньше. 1. 10

Типы SSLP ДНК-маркёры, основанные на микросателлитах, более популярны, чем основанные на минисателлитах, по двум причинам: -Минисателлиты неравномерно распределены по всему геному, чаще встречаются в теломерных областях на концах хромосом, микросателлиты более равномерно распределены в геноме. -точная типизация полиморфизма длины путём ПЦР возможна при длине последовательностей не более 300 п. н. , а большинство минисателлитных аллелей 11

3 ДНК- маркёр. Полиморфизмы отдельных нуклеотидов SNP – это позиции генома, в которых некоторые индивидуумы имеют один нуклеотид, например, G, а другие имеют отличающийся от него нуклеотид – С. 12

Большинство SNP имеют 2 аллеля, поскольку SNP возникают, когда в геноме происходят точечные мутации, преобразовывающие один нуклеотид в другой. Если подобная мутация случится в репродуктивных клетках, то один или более его потомков могут унаследовать эту мутацию, и в итоге SNP станет закреплённым в популяции. 13

Методы типизации SNP Методы базируются на анализе гибридизацией олигонуклеотидов. -Технология чипов ДНК - Методы гибридизации в растворе - Анализ лигированием олигонуклеотидов (OLA) - Система размножения термостабильных мутаций, или тест ARMS. 14

Методы типизации SNP Технология чипов ДНК На поверхность стеклянной пластины площадью 2 см 2 с множеством различных олигонуклеотидов пипеткой наносится предназначенная для тестирования ДНК, помеченная флюоресцентным маркёром. Гибридизация детектируется путём анализа чипа с помощью флюоресцентного микроскопа. Позиции, в которых испускается флюоресцентный сигнал, показывают, какие олигонуклеотиды 1. 15

Методы типизации SNP 2. Метод гибридизации в растворе Используется пара меток, в которые входит флюоресцентный краситель и вещество, гасящее флюоресцентный сигнал при сближении с испускающим его красителем. Краситель прикрепляется к одному концу олигонуклеотида, гасящее вещество – к другому концу. Если между олигонуклеотидом и тестируемой ДНК происходит гибридизация, то данное спаривание оснований нарушается, гаситель отрывается от красителя, и тот вырабатывает флюоресцентный сигнал. 16

Методы типизации SNP 3. Анализ лигированием нуклеотидов (OLA) Применяются два олигонуклеотида, которые отжигаются смежно другу, при этом 3’-конец одного из них точно попадает в SNP. Этот олигонуклеотид образует полностью спаренную основаниями структуру, если в матричной ДНК присутствует одна версия SNP, и когда это происходит, данный олигонуклеотид может быть 17

Методы типизации SNP 4. Система размножения термостабильных мутаций (тест ARMS) Контрольным олигонуклеотидом выступает одна из пары затравок ПЦР. Если контрольная затравка отжигается к SNP, то он может быть продолжен с помощью полимеразы Taq и ПЦР может иметь место, но если она не отжигается из-за того, что присутствует альтернативная версия SNP, то никаких продуктов ПЦР не 18

Сцепление генетических признаков Генетическое картирование основано на законах наследственности, описанных Грегором Менделем ещё в 1865 году. Помимо первых двух законов Менделя, встречаются ещё два случая необычного сцепления: -Неполное доминирование (гетерозиготная форма проявляет фенотип, промежуточный между двумя гомозиготными формами); -Кодоминирование (гетерозиготная форма показывает оба гомозиготных фенотипа) 19

Определяющий шаг в развитии генетического картирования Когда в 1900 году законы Менделя были переоткрыты, выяснилось, что полное сцепление, которое ожидалось между многими парами генов, не осуществилось. Пары генов или наследовались независимо, или показывали лишь неполное сцепление: иногда наследовались вместе, иногда порознь. p Разрешение этого противоречия и стало решающим шагом в развитии составления генетических карт. p 20

Рассуждения Томаса Моргана Неполное сцепление объясняется поведением хромосом во время мейоза. p Процесс кроссинговера (или рекомбинации) был открыт бельгийским цитологом Янсеном в 1909 году и помог Моргану объяснить неполное сцепление. Рассмотрим эффект, который имеет кроссинговер на наследование генов. p 21

Эффект кроссинговера Имеется два возможных сценария: p Между генами А и В не происходит кроссинговер. Тогда две гаметы имеют генотип АВ, две другие – аb. p Между генами А и В происходит кроссинговер. Это приводит к обмену сегментами ДНК между гомологичными хромосомами. В итоге каждая гамета имеет отличный от других генотип: AB, a. B, Ab и ab. Помимо гамет с родительскими генотипами появляются гаметы с 22

Составление генетических карт Когда Морган объяснил неполное сцепление кроссинговером, он изобрёл способ наносить на карту отдельные позиции генов в хромосоме. Допустим, кроссинговер является случайным событием, а значит, может произойти в любой позиции на протяжении пары вытянутых одна вдоль другой хроматид. Если это верно, то два гена, расположенные близко друг к другу, будут разделяться кроссинговерами реже, чем гены, лежащие дальше друг от друга. Частота, с которой гены разъединяются кроссинговерами, будет прямо пропорциональна отдалению их друг от друга. Поэтому частота рекомбинации является мерой расстояния 23

Анализ сцепления генетических признаков у организмов различного типа. Включает три ситуации: p Анализ сцепления генетических признаков у видов наподобие плодовой мушки и мыши, с которыми можно выполнять эксперименты по скрещиванию; p Анализ сцепления генетических признаков у людей, с которыми нельзя проводить эксперименты, но можно изучать родословные; p Анализ сцепления генетических признаков у бактерий, которые не 24

Анализ сцепления генетических признаков при возможности проведения скрещивания Метод основан на анализе потомства от экспериментальных скрещиваний, при известных генотипах родителей. Обычно используется анализирующее скрещивание. Этот метод применим ко всем эукариотам, но неприменим к человеку из этических соображений. 25

Составление генетической карты на основе анализа родословной человека Зачастую из-за соблюдения научной и медицинской этики учёные могут оперировать лишь скудными данными, так как браки редко дают удобное анализирующее скрещивание, и генотипы многих членов семей могут быть неизвестны ввиду смерти или нежелания сотрудничать. Обыкновенно, чтобы решить необходимую генетическую задачу, достаточно знать дополнительно генотип хотя бы одного родственника, но по разным причинам это невозможно. 26

Составление генетических карт бактерий Главная трудность состоит в том, что бактерии гаплоидны и не подвергаются мейозу. Поэтому используются три способа, способные вызвать кроссинговер: p В процессе коньюгации происходит передача эписомы (сегмент хромосомной ДНК длиной до 1 млн. п. н.) p Трансдукция (передача фрагмента ДНК длиной до 50 тыс. п. н. через бактериофаг) p Трансформация (клетка-реципиент 27

Составление физических карт Полученная исключительно генетическими методами карта не будет полностью точна. Это обусловлено следующими причинами: 1. Разрешение генетической карты зависит от числа кроссинговеров, которые были набраны. Для микроорганизмов это не главная проблема, поскольку они могут быть получены в любом количестве. Проблема с людьми и другими эукариотами в том, что невозможно получить большое число потомков, так как может быть изучено сравнительно 28

Составление физических карт 2. Генетические карты имеют ограниченную точность. На картинке изображено сравнение физической и генетической карт дрожжей Saccharomyces cerevisiae. Сравнение показывает, что порядок двух верхних маркёров на генетической карте неверен и также есть различия в относительном 29

Составление рестрикционных карт Простейший способ составления рестрикционной карты – сравнение размеров фрагментов, полученных при переваривании молекулы ДНК двумя разными ферментами рестрикции. Выбрать единственно верную карту позволяет дополнительная обработка исходной ДНК одним ферментом с предотвращением протекания переваривания до конца. Это называется частичной рестрикцией. Масштаб рестрикционной карты ограничивается длиной рестриктов. Рестрикционное картирование более приемлемо для маленьких молекул. 31

Составление рестрикционных карт Возможно ли использование рестрикционного анализа для картирования геномов размером более 50 тыс. п. н. ? Да, ограничения рестрикционного картирования могут быть ослаблены за счёт подбора ферментов, которые имеют редкие участки разрезания в целевой молекуле ДНК («редкощепящие рестриктазы») 32

Метод OFAGE Электрофорез в геле с ортогонально чередующимся полем. Таким образом, каждое изменение поля вынуждает молекулы перестраиваться, короткие молекулы перестраиваются и Электрическое поле чередуется мигрируют через гель между двумя парами быстрее длинных. За счёт электродов, каждая из которых такого приёма позволяются помещена по углом 45° к более длинные фрагменты, продольной линии геля. чем при обычном электрофорезе. К подобного рода методам относят также CHEF – электрофорез в геле с однородными электрическими полями и 33 FIGE – электрофорез в геле с обращением поля.

Непосредственное наблюдение участков рестрикции в молекулах ДНК. Для нанесения на карту участков рестрикции можно использовать методы, не связанные с электрофорезом. p Метод оптического картирования: позиции участков рестрикции определяются путём непосредственного наблюдения разрезанных молекул ДНК в микроскоп. Для закрепления ДНК на предметном стекле используют вытягивание гелем и расчёсывание молекул. p Для вытягивания гелем хромосомную ДНК переводят во взвесь в расплавленной агарозе и помещают на предметное стекло микроскопа. По мере охлаждения и затвердевания геля молекулы ДНК вытягиваются. p Для расчёсывания волокна ДНК приготовляют путём погружения покрытого силиконом покровного стекла в раствор ДНК, выдерживая его там в течение 5 минут. Далее вынимают стекло из раствора. Сила, необходимая для 34 протягивания ДНК через поверхностный мениск, заставляет каждую из них вытягиваться в линию. При засыхании ДНК

Флюоресцентная гибридизация in situ (FISH) В этой методике маркёром является последовательность ДНК, которая отображается путём гибридизации с флюоресцентным зондом. Ненарушенная хромосома исследуется путём её зондирования меченой молекулой ДНК. Для работы метода ДНК в хромосоме денатурируется(высушивается на предметном стекле и обрабатывается 36

FISH в действии 1. 2. Первоначально метод использовался с метафазными хромосомами, но их сильная уплотнённость не позволяла составлять карты с высокой разрешающей способностью. В 1995 году был разработан ряд методов FISH более высокого разрешения. Оно достигалось за счёт изменения характера изучаемого хромосомного аппарата. Если метафазные хромосомы слишком сжаты для крупномасштабного картирования, то нам следует использовать хромосомы в более вытянутом виде. Добиться этого можно двумя способами. Механически вытянутые хромосомы могут быть получены за счёт изменения метода приготовления препарата, применяемого для выделения хромосом из метафазных ядер. Неметафазные хромосомы используются, потому что во всех стадиях клеточного цикла, кроме метафазы, хромосомы пребывают в естественном для них 37 развёрнутом состоянии. Интерфазные хромосомы

Картирование с помощью меченых участков последовательности (STS) В настоящее время это самый мощный метод физического картирования. Меченый участок последовательности, или STS – короткая последовательность ДНК, 100 -500 п. н. в длину, которая легко опознаётся и лишь единожды встречается в хромосоме или изучаемом геноме. Чтобы нанести на карту набор STS, необходимо располагать множеством перекрывающихся фрагментов ДНК из отдельной хромосомы или полного генома. Какие фрагменты содержат какие STS, определяется методом гибридизационного анализа, или, чаще, ПЦР. Любая уникальная последовательность ДНК может быть использована в качестве STS. Для этого последовательность ДНК должна быть известна, а STS должен иметь уникальное 38 местоположение на изучаемой хромосоме.

Методы получения STS 1. 2. 3. Ярлыки экспрессируемых последовательностей – короткие последовательности, получаемые анализом клонов к. ДНК. Полиморфизмы длины простой последовательности (SSLP) Случайные геномные последовательности – получают секвенированием случайных частей клонированной геномной к. ДНК. 39

Фрагменты ДНК для картирования с помощью STS Иначе реактив для картирования; существуют в виде библиотеки клонов и радиационных гибридов. Радиационный гибрид – клетка грызуна, содержащая фрагменты хромосом другого организма. При разбиении хромосомы на фрагменты большая доза излучения давала большее число фрагментов. Слияние стимулируется химически (полиэтиленгликолем) или биологически – вирусом Сёндай. 40

Выводы p p p Карты геномов – опорная схема для проектов секвенирования, так как они позволяют проверять точность собранной последовательности ДНК. Генетические карты строят по результатам экспериментов по скрещиванию и анализа родословных, физические карты – посредством прямого наблюдения молекул ДНК. В самых первых генетических картах маркёрами выступали гены, аллели которых можно было легко отличать (по резко отличным фенотипам), ныне же ДНК-маркёрами являются полиморфизмы длины фрагмента рестрикции (RFLP), полиморфизмы длины простой последовательности (SSLP) и полиморфизмы отдельных нуклеотидов (SNP). Все они легко типизируются посредством ПЦР. Анализ сцепления генетических признаков позволяет определить частоту рекомбинации между парой маркёров. Для многих организмов анализ сцепления генетических признаков прослеживается при помощи запланированных 41 экспериментов по скрещиванию. С людьми их проведение

Выводы p p p Генетическое картирование генома человека опирается на сведения, почёрпнутые из анализа родословной. Низкое разрешение генетических карт уточняется физическим картированием. В молекуле ДНК позиции участков рестрикции определяются рестрикционным картированием. Флюоресцентная гибридизация более продуктивная, в ней препарат зондируется маркёром, меченным флюоресцентной меткой. Позиция гибридизации определяется микроскопированием. Наиболее подробные физические карты получаются методом картирования содержания меченых участков последовательности (STS). Позиция маркёра на карте определяется фрагментами из коллекции, содержащими копии маркёра. 42

КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ АЛЬ-ФАРАБИ

Факультет : биологии и биотехнологии

Кафедра : биотехнологии

«РЕФЕРАТ»

На тему: ГЕНЕТИЧЕСКОЕ СЦЕПЛЕНИЕ И КАРТИРОВАНИЕ ГЕНОВ ЧЕЛОВЕКА.

Выполнили : студенты 3-курса (мед.бт.)

Нуралибеков С.Ш.

Давронова М.А.

Проверила : к.б.н. ,доцент кафедры молекулярной

биологии и генетики Омирбекова Н.Ж.

АЛМАТЫ 2018

Генетические карты сцепления…………………………………………………………..3

Современные методы построения генетических карт сцепления……..........……...….5

ПЦР в исследованиях генома человека………………………………....………….……8

Физические карты низкого разрешения…………………………………………..….….9

Физические карты высокого разрешения……………..………………………..………11

Список использованных источников ………………...……………..………………….13

Картирование и определение первичной структуры генома человека

После краткого рассмотрения основных методов, наиболее часто используемых в молекулярной генетике для исследования структуры и механизмов функционирования генов, представляется целесообразным на примере генома человека подробнее познакомиться с практическим применением этих методов и их модификаций для изучения больших геномов. В целях всестороннего исследования генома человека, этого колоссального по объему хранилища его генетической информации, недавно была разработана и воплощается в жизнь специальная международная программа "Геном человека" ("Human Genome Project"). Основной задачей программы является построение исчерпывающих генетических карт большого разрешения каждой из 24 хромосом человека, которое, в конечном счете, должно завершиться определением полной первичной структуры ДНК этих хромосом. В настоящее время работы по проекту идут полным ходом. В случае успешного его завершения (а это по планам должно произойти в 2003 г.) у человечества появятся перспективы досконального изучения функциональной значимости и механизмов функционирования каждого из его генов, а также генетических механизмов, управляющих биологией человека, и установления причин большинства патологических состояний его организма.

Основные подходы к картированию генома человека

Решение основной задачи программы "Геном человека" включает три основных этапа. На первом этапе необходимо специфическим образом разделить каждую индивидуальную хромосому на части меньшего размера, позволяющего их дальнейший анализ известными методами. Вторая стадия исследований предполагает определение взаимного расположения этих индивидуальных фрагментов ДНК друг относительно друга и их локализации в самих хромосомах. На завершающем этапе необходимо произвести собственно определение первичной структуры ДНК каждого из охарактеризованных фрагментов хромосом и составить полную непрерывную последовательность их нуклеотидов. Решение задачи не будет полным, если в найденных последовательностях нуклеотидов не удастся локализовать все гены организма и определить их функциональное значение. Прохождение трех вышеперечисленных этапов требуется не только для получения исчерпывающих характеристик генома человека, но и любого другого генома большого размера.

Генетические карты сцепления

Генетические карты сцепления представляют собой одномерные схемы взаимного расположения генетических маркеров на индивидуальных хромосомах. Под генетическими маркерами понимают любые наследуемые фенотипические признаки, различающиеся у отдельных особей. Фенотипические признаки, отвечающие требованиям генетических маркеров, весьма разнообразны. Они включают в себя как особенности поведения или предрасположенность к определенным заболеваниям, так и морфологические признаки целых организмов или их макромолекул, различающихся по структуре. С развитием простых и эффективных методов исследования биологических макромолекул такие признаки, известные под названием молекулярных маркеров, стали наиболее часто использоваться при построении генетических карт сцепления. Прежде чем перейти к рассмотрению методов построения таких карт и их значения для исследования генома, необходимо напомнить , что термин "сцепление" употребляется в генетике для обозначения вероятности совместной передачи двух признаков от одного из родителей потомству.

При образовании половых клеток (гамет) у животных и растений на стадии мейоза, как правило, происходит синапсис (конъюгация) гомологичных хромосом. Сестринские хроматиды гомологичных хромосом соединяются по всей длине друг с другом, и в результате кроссинговера (генетической рекомбинации между хроматидами) происходит обмен их частями. Чем дальше два генетических маркера располагаются друг от друга на хроматиде, тем больше вероятность того, что разрыв хроматиды, необходимый для кроссинговера, произойдет между ними, и два маркера в новой хромосоме, принадлежащей новой гамете, окажутся отделенными друг от друга, т.е. их сцепление нарушится. Единицей сцепления генетических маркеров является морганида (единица Моргана, М), которая содержит 100 сантиморганид (сМ). 1 сМ соответствует физическому расстоянию на генетической карте между двумя маркерами, рекомбинация между которыми происходит с частотой 1%. Выраженная в парах оснований 1 сМ соответствует 1 млн п.о. (м.п.о.) ДНК.

Генетические карты сцепления правильно отражают порядок расположения генетических маркеров на хромосомах, однако полученные при этом значения расстояний между ними не соответствуют реальным физическим расстояниям. Обычно данный факт связывают с тем, что эффективность рекомбинации между хроматидами на отдельных участках хромосом может сильно различаться. В частности, она подавлена в гетерохроматиновых участках хромосом. С другой стороны, в хромосомах часто встречаются "горячие точки" рекомбинации. Использование частот рекомбинации для построения физических генетических карт без учета этих факторов будет приводить к искажениям (соответственно занижению или завышению) реальных расстояний между генетическими маркерами. Таким образом, генетические карты сцепления являются наименее точными из всех имеющихся типов генетических карт, и их можно рассматривать только в качестве первого приближения к реальным физическим картам. Тем не менее, на практике именно они и только они позволяют локализовать сложные генетические маркеры (например ассоциированные с симптомами заболевания) на первых этапах исследования и дают возможность их дальнейшего изучения. Необходимо помнить, что в отсутствие кроссинговера все гены, находящиеся на индивидуальной хромосоме, передавались бы от родителей потомству вместе, поскольку они физически сцеплены друг с другом. Поэтому индивидуальные хромосомы образуют группы сцепления генов, и одной из первых задач построения генетических карт сцепления является отнесение исследуемого гена или последовательности нуклеотидов к конкретной группе сцепления. В след. таблице перечислены современные методы, которые, по данным В.А. МакКьюзика, наиболее часто использовались для построения генетических карт сцепления до конца 1990 г.

Современные методы построения генетических карт сцепления


Метод

Число картированных локусов

Гибридизация соматических клеток

1148

Гибридизация in situ

687

Семейный

466

Определение эффекта дозы

159

Рестрикционное картирование

176

Использование хромосомных аберраций

123

Использование синтении

110

Сегрегация генов, индуцированная облучением

18

Другие методы

143

Всего

3030

Гибридизация соматических клеток. Одним из наиболее популярных методов отнесения генетического маркера (функционально активного гена) к конкретной группе сцепления является гибридизация (слияние друг с другом) соматических клеток разных биологических видов организмов, один из которых – исследуемый. У межвидовых гибридов соматических клеток в процессе культивирования происходит утрата хромосом преимущественно одного из биологических видов. Потеря хромосом носит, как правило, случайный характер, и образующиеся клоны клеток содержат оставшиеся хромосомы в разных сочетаниях. Анализ клонов, содержащих разные наборы хромосом исследуемого вида, позволяет определить, с какой из этих оставшихся хромосом ассоциирована экспрессия исследуемого маркера, и, следовательно, локализовать ген на конкретной хромосоме.

Гибридизация in situ. Метод гибридизации in situ также широко используется для картирования последовательностей нуклеотидов на хромосомах. С этой целью препараты фиксированных хромосом гибридизуют (инкубируют при повышенной температуре с последующим охлаждением) с исследуемыми последовательностями нуклеотидов, меченными радиоактивной, флуоресцентной или иной меткой. После отмывания несвязавшейся метки оставшиеся меченые молекулы нуклеиновых кислот оказываются ассоциированными с участками хромосом, содержащими последовательности, комплементарные исследуемым меченым последовательностям нуклеотидов. Полученные гибриды анализируют с помощью микроскопа либо непосредственно, либо после авторадиографии. Для этой группы методов характерна более высокая разрешающая способность, чем для гибридизации соматических клеток, поскольку они позволяют локализовать изучаемые последовательности нуклеотидов на хромосомах. По мере выполнения программы "Геном человека" в руках исследователей появляется все больше изолированных последовательностей нуклеотидов, которые можно использовать в качестве зондов для гибридизации in situ. В связи с этим данные методы по частоте использования в последнее время прочно выходят на первое место. Наиболее популярной оказывается группа методов, получивших название флуоресцентной гибридизации in situ (fluorescence in situ hybridization – FISH), при проведении которой используются полинуклеотидные зонды, содержащие флуоресцентную метку. В частности, в 1996 г. было опубликовано >600 работ, в которых описано использование этого метода.

Семейный генетический анализ сцепления. Эта группа методов часто используется в медицинской генетике для выявления связи (сцепления) между симптомами заболевания, вызываемого мутацией в неизвестном гене, и другими генетическими маркерами. В данном случае в качестве одного из генетических маркеров выступают сами симптомы заболевания. В геноме человека обнаружено большое количество полиморфизмов, в том числе ПДРФ. ПДРФ распределены более или менее равномерно в геноме человека на расстоянии 5–10 сМ друг от друга. Чем ближе индивидуальные полиморфные локусы расположены к гену , ответственному за заболевание, тем меньше вероятность их разделения при рекомбинации в мейозе и тем чаще они будут встречаться вместе у больного индивидуума и вместе передаваться от родителей потомству. Клонировав протяженный участок генома, включающий соответствующий полиморфный маркер (его отбор из клонотеки геномной ДНК проводят с помощью зонда), можно одновременно вместе с ним с большой вероятностью выделить ген, вызывающий наследственное заболевание. Такие подходы были, в частности, успешно применены для проведения семейного анализа и выделения соответствующих генов при мышечной дистрофии Дюшенна, кистозном фиброзе почек (муковисцидозе) и миотонической дистрофии. Информативность отдельных ПДРФ генома человека зависит от уровня их гетерозиготности в исследуемой популяции. Мерой информативности ПДРФ как генетического маркера по предложению Д. Ботштейна и соавторов (1980 г.) принято считать значение содержания полиморфной информации PIC (polymorphism information content), которое представляет собой отношение числа скрещиваний, в которых хотя бы у одного из родителей исследуемый полиморфный маркер находится в гетерозиготном состоянии, ко всем скрещиваниям.

Определение эффекта дозы гена и использование хромосомных аберраций . Этими методами обнаруживают корреляции между уровнем экспрессии исследуемого гена и количеством конкретных хромосом в анеуплоидных линиях клеток или структурными перестройками хромосом (хромосомными мутациями – аберрациями). Анеуплоидией называют наличие у клетки, ткани или целого организма числа хромосом, не равного типичному для данного биологического вида. Хромосомные аберрации в виде транслокаций участков хромосом в гетерохроматиновые области тех же самых или других хромосом часто сопровождаются подавлением транскрипции генов, расположенных в транслоцированных участках или в хромосоме-акцепторе (мозаичный эффект положения).

Использование синтении. Синтения – это структурное сходство групп сцепления генов у организмов разных биологических видов. В частности, в геномах человека и мыши известно несколько десятков синтеничных групп генов. Наличие феномена синтении позволяет суживать круг поиска места локализации исследуемого гена на хромосомах, ограничивая его областью известных генов, принадлежащих к конкретной синтеничной группе.

Сегрегация генов, индуцируемая ионизирующим излучением. С помощью этого метода определяют расстояние между исследуемыми генами путем оценки вероятности их разделения (сегрегации) после облучения клеток определенной стандартной дозой ионизирующего излучения. Облученные клетки спасают от гибели гибридизацией с соматическими клетками грызунов, и у соматических гибридов в культуре определяют наличие исследуемых маркеров облученных клеток. В итоге удается сделать вывод о наличии или отсутствии сцепления (физическом расстоянии) между этими генами.

Среди других методов следует упомянуть способы, основанные на использовании для картирования генов больших фрагментов ДНК, образуемых под действием крупнощепящих рестриктаз. После расщепления геномной ДНК образующиеся фрагменты разделяют электрофорезом в импульсном электрическом поле и далее их гибридизуют по Саузерну с зондами, соответствующими картируемым генам. Если после проведения гибридизации сигналы обоих зондов локализуются на одном и том же крупном фрагменте ДНК, это говорит о тесном сцеплении таких генов.

ПЦР в исследованиях генома человека

Полимеразная цепная реакция занимает центральное место в разработке подходов к практическому осуществлению программы "Геном человека". Как уже обсуждалось выше, с помощью ПЦР можно быстро и эффективно амплифицировать почти любой короткий участок генома человека, и полученные продукты ПЦР далее использовать в качестве зондов для картирования соответствующих участков на хромосомах путем гибридизации по Саузерну или in situ.

Концепция STS. Одной из ключевых концепций , лежащих в основе картирования генов человека в рамках обсуждаемой программы, является концепция сайтов, привязанных к последовательностям (sequence-tagged sites – STS). В соответствии с этой концепцией все фрагменты ДНК, используемые для построения генетических или физических карт, можно однозначно идентифицировать с помощью последовательности нуклеотидов длиной в 200–500 п.о., которая будет уникальной для данного фрагмента. Каждый из этих сайтов необходимо секвенировать, что даст возможность в дальнейшем их амплифицировать с помощью ПЦР и применять в качестве зондов. Использование STS позволило бы применять их последовательности в виде продуктов ПЦР в качестве зондов для направленного выделения любого фрагмента ДНК того или иного участка генома из клонотек геномных последовательностей. В результате могут быть созданы базы данных, включающие локализацию и структуру всех STS, а также праймеров, необходимых для их амплификации. Это избавило бы лаборатории от необходимости хранения многочисленных клонов и их рассылки в другие лаборатории для проведения исследований. Кроме того, STS создают основу для разработки единого языка, на котором разные лаборатории могли бы описывать свои клоны. Таким образом, конечным результатом разработки концепции STS была бы исчерпывающая карта STS генома человека. Теоретически для построения генетической карты размером в 1 сМ необходимо 3000 полностью информативных, полиморфных ДНК-маркеров. Однако поскольку полиморфные маркеры распределены в геноме неравномерно и лишь немногие из них полностью информативны, реальное число маркеров, требуемых для построения карты такого размера, оценивается в 30–50 тысяч. Для получения маркеров, соответствующих исследуемым участкам хромосом, в настоящее время часто применяют праймеры, соответствующие диспергированным повторяющимся последовательностям, среди которых первыми стали использовать Alu-последовательности.

Alu-ПЦР. Диспергированные повторяющиеся Alu-последовательности характерны именно для генома человека. Праймеры, специфичные в отношении Alu-последовательностей, используют для амплификации участков ДНК генома человека, заключенных между Alu-повторами, которые располагаются в среднем на расстоянии 4–10 т.п.о. друг от друга. Другим вариантом Alu-ПЦР является направленный синтез с ее помощью ДНК-зондов к участкам хромосом, полученным после лазерной фрагментации, индивидуальным хромосомам, выделенным с помощью проточной цитофлуориметрии, или ДНК гибридных клеток, содержащих определенную часть генома человека. Кроме того, Alu-ПЦР используют для получения уникальных фингерпринтов , характеризующих клеточные гибриды с точки зрения стабильности их генома, а также для характеристики фрагментов ДНК человека, клонированных в YAC-векторах, космидах или векторах на основе ДНК бактериофагов. Уникальность Alu-последовательностей для генома человека делает возможным их применение для "прогулок по хромосомам" , а также для расширения существующих контигов. Поскольку в геноме человека >90% умеренно повторяющихся последовательностей представлены семействами Alu и KpnI, неудивительно, что последние также применяются в ПЦР для тех же целей, что и Alu. Однако здесь профили продуктов ПЦР менее сложны, поскольку последовательности KpnI повторяются в геноме реже и обладают характерной локализацией в хромосомах.

ПЦР активно используется для выявления полиморфных молекулярных маркеров при построении генетических карт сцепления, основные принципы получения которых были рассмотрены выше. Этот метод оказывается полезным и при секвенировании ДНК, а также при построении физических карт высокого разрешения для генома человека. О последних двух сферах применения ПЦР подробнее речь пойдет ниже.

Физические карты низкого разрешения

В отличие от рассмотренных выше генетических карт сцепления физические карты генома отражают реальное расстояние между маркерами, выражаемое в парах оснований. Физические карты различаются по степени их разрешения, т.е. по тем деталям структуры генома, которые на них представлены. Исчерпывающая физическая карта генома человека максимального разрешения будет содержать полную нуклеотидную последовательность всех его хромосом. На другом полюсе физических карт с минимальным разрешением находятся хромосомные (цитогенетические) карты генома.

Четыре типа генетических карт геномной ДНК и их взаимоотношения

1 – генетическая карта сцепления, 2 – физическая рестрикционная карта, пробелы обозначают места расщепления ДНК рестриктазами, 3 – физическая карта контигов, показаны перекрывающиеся клоны ДНК, полученные с помощью YAC-векторов, 4 – исчерпывающая физическая карта в виде последовательности нуклеотидов ДНК. На всех картах представлен один и тот же участок хромосомы

Хромосомные карты. Хромосомные карты генома человека получают локализацией генетических маркеров на индивидуальных хромосомах с использованием цитогенетических методов, включая авторадиографию и FISH. В последних двух случаях радиоактивная или флуоресцентная метки, ассоциированные с исследуемыми генетическими локусами интактных хромосом, выявляются с помощью световой микроскопии. Еще совсем недавно хромосомные карты позволяли локализовать исследуемый фрагмент ДНК на участке хромосомы протяженностью 10 м.п.о. Современные методы гибридизации in situ с использованием метафазных хромосом , главным образом, метод FISH, локализуют полинуклеотидные маркеры в пределах 2–5 м.п.о. Более того, при гибридизации in situ с интерфазными хромосомами, в которых генетический материал находится в менее компактной форме, разрешающая способность хромосомных карт приближается к 100 т.п.о.

Точность хромосомных карт повышается и с использованием современных генетических методов. Например, способность ПЦР амплифицировать сегменты ДНК единичного сперматозоида позволяет исследовать большое число мейозов, как бы законсервированных в отдельных образцах спермы. В результате появляется возможность проверки взаимного расположения генетических маркеров, локализованных на хромосомных картах более грубыми методами.

Карты кДНК . Карты кДНК отражают положение экспрессирующихся участков ДНК (экзонов) относительно известных цитогенетических маркеров (бэндов) на метафазных хромосомах. Поскольку такие карты дают представление о локализации транскрибирующихся участков генома, в том числе и генов с неизвестными функциями, они могут быть использованы для поиска новых генов. Этот подход особенно полезен при поиске генов, повреждения которых вызывают заболевания человека, в том случае если приблизительная локализация таких участков хромосом уже предварительно проведена на генетических картах сцепления в результате семейного генетического анализа.

Физические карты высокого разрешения

Две стратегии построения физических карт ДНК

а – стратегия "сверху вниз": ДНК целой хромосомы расщепляется крупнощепящими рестриктазами, для каждого из индивидуальных фрагментов ДНК строится рестрикционная карта; б – стратегия "снизу вверх", индивидуальные YAC-клоны после идентификации объединяются в контиги

В попытках построения карт генома человека высокого разрешения экспериментально реализуются два альтернативных подхода, получивших названия картирования сверху вниз (top-down mapping) и картирования снизу вверх (bottom-up mapping). При картировании сверху вниз исходным в анализе является препарат ДНК индивидуальной хромосомы человека. ДНК разрезается крупнощепящими рестриктазами (например NotI) на длинные фрагменты, которые после разделения электрофорезом в импульсном электрическом поле подвергаются дальнейшему рестрикционному анализу с другими рестриктазами. В результате получают макрорестрикционную карту, на которой достаточно полно представлены все последовательности исследуемой хромосомы или ее части, однако ее разрешение невысоко. На такой карте очень трудно локализовать индивидуальные гены. К тому же каждая индивидуальная карта редко охватывает протяженные сегменты ДНК (как правило, не более 1–10 м.п.о.).

При картировании генома человека снизу вверх на основе препарата суммарной ДНК генома или индивидуальной хромосомы получают серию случайных клонов протяженных последовательностей ДНК (10–1000 т.п.о), часть из которых перекрывается друг с другом. В качестве вектора для клонирования в этом случае часто используют искусственные минихромосомы бактерий (BAC) или дрожжей (YAC), подробно описанные в разделе 7.2.4. Серия частично перекрывающихся и дополняющих друг друга клонов образует непрерывную состыкованную (contiguous) последовательность нуклеотидов ДНК, получившую название контига (contig). Правильность полученных контигов подтверждают гибридизацией in situ (FISH) с одновременной их привязкой к определенным участкам исследуемых хромосом. Карты, основанные на контигах, представляют полную информацию о структуре отдельных сегментов хромосом и позволяют локализовать отдельные гены. Однако такие карты трудно применять для реконструкции целых хромосом или протяженных их участков из-за отсутствия соответствующих клонов в имеющихся клонотеках генов.

Основная проблема, которую приходится решать при использовании обоих подходов к построению физических карт высокого разрешения, – объединение разрозненных фрагментов ДНК в непрерывные последовательности нуклеотидов. Чаще всего для этого применяют специальные клонированные фрагменты ДНК, получившие название связующих (linking) клонов. Фрагменты ДНК из связующих клонов содержат в своих внутренних частях последовательности нуклеотидов крупнощепящих рестриктаз и, следовательно, представляют собой места стыковки фрагментов ДНК , используемых на первых этапах физического картирования. Гибридизацией по Саузерну, при проведении которой в качестве зондов используют фрагменты ДНК связующих клонов, определяют фрагменты ДНК физических карт, содержащие последовательности нуклеотидов окрестностей сайтов рестрикции крупнощепящих рестриктаз. Если два таких фрагмента найдены, то соответствующий связующий клон перекрывает оба этих фрагмента и является их частью. Связующие клоны, в свою очередь, отбирают из клонотек генов с помощью зондов, которые представляют собой последовательности нуклеотидов сайтов рестрикции крупнощепящих рестриктаз.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1) Clark M.S. Comparative genomics: The key to understanding the Human Genome Project // BioEssays. 1999. Vol. 21. P. 21–30.

2) Billings P.R., Smith C.L., Cantor C.L. New techniques for physical mapping of the human genome // FASEB J. 1991. Vol. 5. P. 28–34.

3) Георгиев Г.П. Гены высших организмов и их экспрессия. М.: Наука, 1989. 254 с.

4) http://referatwork.ru/refs/source/ref-8543.html

Картирование генов - определение положения данного гена на какой-либо хромосоме относительно других генов. Используют три основные группы методов картирования генов – физическое (определение с помощью рестрикционных карт, электронной микроскопии и некоторых вариантов электрофореза межгенных расстояний – в нуклеотидах), генетическое (определение частот рекомбинаций между генами, в частности, в семейном анализе и др.) и цитогенетическое (гибридизации in situ, получение монохромосомных клеточных гибридов, делеционный метод и др.). В генетике человека приняты 4 степени надежности локализации данного гена – подтвержденная (установлена в двух и более независимых лабораториях или на материале двух и более независимых тест - объектов), предварительная (1 лаборатория или 1 анализируемая семья), противоречивая (несовпадение данных разных исследователей), сомнительная (не уточненные окончательно данные одной лаборатории).

Генетическое картирование предполагает определение расстояний по частоте рекомбинаций между генами. Физическое картирование использует некоторые методы молекулярной генетики для определения расстояния в нуклеотидах. Генетическое картирование - это определение группы сцепления и положения картируемого гена относительно других генов данной хромосомы.
Чем больше генов известно у данного вида, тем точнее результаты этой процедуры. Как правило, число генов в группах сцепления зависит от линейных размеров соответствующих хромосом. Однако, протяженные области конститутивного гетерохроматина (в районе центромеры и теломерных участков) практически не содержат генов и, таким образом, нарушают эту зависимость.

На первом этапе картирования определяют принадлежность гена к той или иной группе сцепления. Как известно, у D. melanogaster вдиплоидном наборе четыре пары хромосом: первая пара - половые хромосомы (XX - у самок, XY - у самцов), вторая, третья и четвертая - аутосомы. Число генов в Y-хромосоме самцов очень мало. Для локализации вновь возникшей мутации необходимо располагать набором маркерных генов для каждой хромосомы. Картирование мутации основывается на анализе ее сцепления с этими маркерами. Например, если интересующая нас мутация наследуется независимо от маркеров второй хромосомы, делается вывод о ее принадлежности к другой группе сцепления.

О значении картирования генов, и в первую очередь генов человека, говорит создание Международной программы "Геном человека ", которая ставит перед собой грандиозную задачу картировать все гены человека и секвенировать полностью всю ДНК генома. Программа разрабатывается в сотнях лабораторий во многих странах мира. Используются методы молекулярной биологии, цитогенетики и генетики соматических клеток. Разработаны критерии, определяющие достоверность картирования. Определены различные уровни достоверности локализации гена.

Важным вкладом в развитие генетики стала хромосомная теория наследственности, разработанная, прежде всего, благодаря усилиям американского генетика Томаса Ханта Моргана и его учеников и сотрудников, избравших объектом своих исследований плодовую мушку Drosophila melanogaster . Изучение закономерностей сцепленного наследования позволило путем анализа результатов скрещиваний составить карты расположения генов в «группах сцепления» и сопоставить группы сцепления с хромосомами (1910-1913 гг.).


Важнейшей задачей молекулярной генетики применительно к медицине является идентификация генов наследственных заболеваний человека и выявление конкретных повреждений в них, приводящих к развитию фенотипических проявлений болезни. Эта задача может пить выполнена с помощью нескольких основных под-
\ОДОВ.
Первый подход к идентификации генов, остававшийся ведущим приблизительно до начала 90-х годов,
| чзируется на имеющейся информации об основном био- х11 мическом дефекте (первичном белковом продукте гена), ха- рактеризующем изучаемую болезнь | Шишкин С.С., Калинин В.Н., ] 992; Gardner Е. et al., 1991; Collins F., 1995].
I l"-реход от белкового анализа на уровень ДНК осуществлялся через секвенирование очищенного белкового продукта и получение ДНК-зондов, использование моноклональных антител и с помощью некоторых других методических приемов. Хромосомная локализация гена в данной схеме поиска является конечным результатом исследования. Описанный подход, использующий ту или иную предварительную информацию о функциональном значении искомого гена, получил название «функциональное клонирование» . Примером успешного применения функционального клонирования является идентификация гена фенилкетонурии. К сожалению, данный метод может быть применен лишь к весьма ограниченному кругу заболеваний человека, тогда как для большинства наследственных болезней первичные продукты гена или патогномоничные биохимические маркеры неизвестны.
Совершенствование молекулярных технологий привело к созданию принципиально иной стратегии поиска гена, не требующей каких-либо предварительных знаний о его функции или первичном биохимическом продукте. Данная стратегия предполагает идентификацию гена на основании точного знания его локализации в определенном хромосомном локусе - «позиционное клонирование» (менее удачный термин «обратная генетика») . Позиционное клонирование ведет к установлению молекулярной основы болезни «от гена к белку» и включает следующие основные этапы: 1) картирование гена болезни в определенном участке конкретной хромосомы (генетическое картирование); 2) составление физической карты изучаемой хромосомной области (физическое картирование); 3) идентификация экспрессирующихся последовательностей ДНК в изучаемой области; 4) секвенирование генов-кандидатов и выявление мутаций в искомом гене у больных лиц; 5) анализ структуры гена.
расшифровка последовательности и первичной структуры его продуктов - мРНК и белка . В ряде случаев позиционное клонирование гена облегчается при обнаружении у больных видимых ци го- генетических перестроек или определяемых делеций в критической хромосомной области, позволяющих значительно повысить точность картирования мутантного гена. Выявление таких перестроек способствовало, в частности, успеху в клонировании генов миодистрофии Дюшепна/Бекера, нейрофиброматоза 1-го типа, туберозного склероза, адренолейкодистрофии и других наследственных заболеваний нервной системы.
Одним из важных промежуточных результатов исследовательского прост а «Геном человека» стало со- здапие все более и более насыщенной транскрипционной карты генома, содержащей сведения о тысячах уже известных генов и экспрессирующихся нуклеотидных последовательностей. Это способствовало значительному развитию еще одного подхода к идентификации первичного генетического дефекта, при котором после предварительного картирования мутантного гена проводится скрининг подходящих генов-кандидатов, расположенных в том же хромосомном участке (lt;lt;positional candidate approach») . Данный метод предполагает наличие определенных знаний о патофизиологии изучаемого заболевания, что дает возможность проводить рациональный отбор гепов-кандидатов для анализа из большого числа генов, которые могут быть расположены в «зоне интереса». Среди неврологических наследственных заболеваний, гены которых были идентифицированы таким образом благодаря анализу подходящих кандидатов в установленном хромосомном интервале, можно назвать дофа-зависимую дистонию и фридрейхо- подобную атаксию с дефицитом витамина Е. По существующим прогнозам, именно анализ «позиционных кандидатов» станет в ближайшем будущем ведущим методом идентификации генов наследственных болезней, чему в немалой степени способствует создание и постоянное расширение компьютерных баз данных экспрессирующихся последовательностей на хромосомах («expressed sequence tags») .
Таким образом, определение хромосомной локализации искомого гена - генетическое картирование - является первым, ключевым шагом на пути к раскрытию молекулярной основы того или иного наследственного заболевания.
Существует несколько основных методов, позволяющих картировать неизвестный ген в конкретном хромосомном локусе: а) клинико-генеалогический (простейший и наиболее давний) - основан на анализе наследования признаков в больших родословных; примером может служить установление локализации гена на Х-хро- мосоме в случае передачи болезни по Х-сцепленному типу; б) цитогенетический - базируется на ассоциации выявляемых при микроскопии хромосомных перестроек с определенным клиническим фенотипом; в) метод гибридизации in situ (в том числе его современная модификация - флюоресцентная гибридизация in situ, FISH) - использует специфическую гибридизацию мРНК и кДНК искомого гена с денатурированными хромосомами на метафазных препаратах клетки; г) метод гибрид ных клеток - основан на анализе совместной сегрегации клеточных признаков и хромосом в клонированных in vitro гибридных соматических клетках [Фогель Ф., Мотульски А., 1990; Gardner Е. et al., 1991]. Все эти методы нашли свое применение в современной молекулярной генетике, однако они обладают серьезными ограничениями, связан ными как с недостаточной разрешающей способностью, так и с существованием жестких предусловий, необходимых для проведения исследования (таких как наличие зондов, доступность селективных систем для отбора гибридных клеток и т.п.). Наиболее мощным, продуктивным и широко используемым в настоящее время методом картирования генов наследственных болезней человека является так называемый linkage-анализ - анализ сцепления искомого гена с набором точно локализованных генетических маркеров .
Центральное положение linkage-анализа заключается в том, что мерой относительного генетического расстояния между двумя локусами па хромосоме может служить частота рекомбинаций между этими локусами в результате кроссинговера гомологичных хромосом в мейозе. Чем ближе расположены локусы па хромосоме, I ем больше вероятность того, что они будут наследоваться как единое целое (группа сцепления); при значительной удаленности изучаемых локусов (т.е. слабой степени сцепления) они с большей вероятностью разойдутся после кроссинговера по разным хромосомам. Частота рекомбинации между локусами 1% принята за единицу

  1. енетического расстояния между ними - 1 сантиморга- ниду (сМ), что эквивалентно в среднем 1 миллиону п.о. Следует подчеркнуть, что частота рекомбинаций и, следовательно, генетическое расстояние, неодинаковы для мужчин и женщин (больше у женщин), для разных хромосом, а также для разных участков одной хромосомы («горячие точки» рекомбинации) .
Сущность анализа сцепления состой! в сопоставлении наследования патологического признака (болез-

Рис. 30. Принцип анализа генетического сцепления на примере аутосомно-доминантного заболевания В данном примере исследованы 4 сцепленных маркера А, В, С и D, по которым реконструированы гаплотипы. Разные по происхождению хромосомы маркированы различными типами штриховки (исходная мутантная хромосома обозначена черным цветом). Все больные в родословной имеют одну и ту же общую (среднюю) часть исходной мутантной хромосомы. Например, в нижнем поколении хромосомы претерпели ряд рекомбинаций, однако у всех больных сибсов (в том числе у лиц Ш-З и Ш-8) сохраняется один и тот же мутантный гаплотип по маркерам В и С (гаплотип у). Напротив, никто из здоровых сибсов в нижнем поколении не унаследовал от отца гаплотип j по маркерам В и С (индивидуум Ш-4 унаследовал хромосому, в которой рекомбинация произошла ниже критического сегмента). Таким образом, сегрегация маркерных аллелей и анализ гаплотипов свидетельствуют о том, что ген заболевания расположен в хромосомном сегменте, включающем в себя маркеры В и С. Соответственно, внешними границами участка хромосомы, в пределах которого расположен мутантный ген, являются маркеры А и D.
и тот же аллель исследуемого маркера, это свидетельствует об отсутствии рекомбинаций между искомым мутантным геном и данным маркером, т.е. о наличии сцепления между ними. Пример сцепления между геном аутосомно-доминантного заболевания и определенными генетическими маркерами представлен на рис. 30.
Для достоверного доказательства сцепления разработан специальный математический аппарат . Принцип расчета заключается в сопоставлении вероятностей гипотез о наличии и отсутствии сцепления при имеющихся семейных данных и выбранной частоте рекомбинаций 0; соотношение этих двух вероятностей (соотношение правдоподобий) выражает шансы за и против сцепления. Для удобства используется десятичный логарифм соотношения правдоподобий - Лод- балл (от англ. Logarithm of the Odds, или LOD):
Po
LOD = Logio --
P1/2 , где P - вероятность
полученного распределения семейных данных для сцепленных генов с частотой рекомбинаций 0, Р - вероятность такого распределения для двух несцепленных свободно рекомбинирующих генов (частота рекомбинаций 0 = 1/2). Использование логарифмической формы расчета позволяет проводить сложение 27од-баллов, полученных при анализе отдельных родословных. Для доказательства генетического сцепления принято значение Лод- балла +3, которое означает соотношение шансов 1000:1 в пользу наличия генетического сцепления междgt; маркером и изучаемым признаком. Лод-балл -2 и ниже свидетельствует о достоверном отсутствии сцепления; значения Лод-балла от +3 до - 2 являются, соответственно, более или менее предположительными с точки зрения наличия сцепления и нуждаются в дальнейшем подтверждении. Частота рекомбинаций 0, для которой был выявлен максимальный Л од-балл, является отражением наиболее вероятного генетического расстояния между изучаемыми локусами; ориентировочно считается, что 1% рекомбинаций свидетельствует об очень тесном сцеплении, частота рекомбинаций около 5% - о хорошем сцеплении и частота 10-20% - о некотором умеренном сцеплении.
Расчет Лоб-баллов предполагает использование специального компьютерного программного обеспечения (программа LIPED, пакет программ LINKAGE и др.) .
Для успеха linkage-анализа необходимо, чтобы исследуемые семьи были информативны по болезни и по генетическому маркеру. Первое означает наличие достаточного числа информативных мейозов в родословной, позволяющих анализировать расхождение признаков в данной родословной. С практической точки зрения это означает наличие большого числа доступных для анализа больных и здоровых родственников, как правило, из нескольких поколений. Информативность по маркеру предполагает его полиморфизм (т.е. существование большого числа аллелей) и гетерозиготность у ключевых членов семьи, что позволяет дифференцировать генетическое происхождение конкретных аллелей маркера. До конца 80-х годов основным типом маркеров, используемых в анализе сцепления, были участки ДНК хромосом, имеющие в своем составе вариацию в одной паре оснований и различаемые по наличию или отсутствию участка рестрикции для соответствующего фермента, т.е. по длине рестрикционных фрагментов («restriction fragment length polymorphism», RFLP) . Новая эра в генетическом картировании наступила с открытием класса высокополиморфных маркеров, представляющих собой участки ДНК, состоящие из вариабельного числа копий тандемных (СА)п-повторов и обладающие чрезвычайно высокой гетерозиготностью . Это позволило в значительной степени разрешить проблему информативности используемых маркеров и способствовало существенному прогрессу linkage-анализа. По некоторым оценкам, для скрининга полного гаплоидного генома и выявления генетического сцепления необходимо иметь 200-300 высокополиморфных маркеров, равномерно распределенных по хромосомам . Генетические карты последнего поколения включают свыше 5000 таких маркеров , что позволяет считать сегодня задачу установления генетического сцепления принципиально возможной в любых информативных родословных .
Серьезных проблемой, с которой приходится сталкиваться при проведении анализа сцепления на серии семей, является проблема возможной генетической гетерогенности изучаемого клинического синдрома. В случае, если изучаемый фенотип может вызываться мутациями в разных генах, механическое сложение полученных в отдельных семьях положительных (при наличии сцепления) и отрицательных (при его отсутствии) Лод- баллов ведет к нивелированию суммарного значения Лод- балла и ложному выводу о полном отсутствии сцепления. Примером может служить аутосомно-доминантная моторно-сенсорная невропатия 1 типа, обусловленная мутациями в разных генах, локализованных на 1-й, 17-й и других хромосомах . В этой ситуации особое значение приобретает тщательное, детальное обследование больных и семей, направляемых для linkage-анализа, с целью отбора максимально однородных клинических групп. Дополнитеёгьным способом избежать ложно-отрицательного результата исследования является использование в процессе расче

та,/7од-баллов специальной программы HOMOG или аналогичных ей программ, позволяющих оценивать вероятность генетической гетерогенности при полученном конкретном наборе семейных данных . Наиболее действенным подходом на первом этапе исследования является анализ сцепления в одной большой информативной родословной, что позволяет заведомо иск почить возможность генетической гетерогенности в изучаемой группе больных. Дополнительные сложности при проведении linkage-анализа связаны с нередко наблюдающейся неполной пенетрант- ностью и вариабельной экспрессивностью мутантного гена, наличием фенокопий среди обследуемых членов семьи, оценкой возраста начала болезни и возможности доклинического носительства мутации, оценкой распространенности конкретных аллелей изучаемых маркеров в популяции и т.д. . Неверный учет или недооценка этих факторов могут существенно повлиять на итоговый результат, поэтому качество подробного клинико-генеалогического анализа в изучаемых семьях выступает на первый план.
Разработано много новых методов, представляющих из себя дальнейшее развитие традиционной стратегии исследования генетического сцепления и существенно повышающих скорость выполнения, методические возможности и разрешающую способность данного анализа в локализации неизвестных генов наследственных заболеваний человека. Одним из таких методов является мультилокусный анализ (multipoint linkage analysis), позволяющий оценивать Лод-баллы для совокупности сцепленных локусов в соответствии с генетической картой изучаемого хромосомного участка и определять наиболее вероятную локализацию мутантного гена в пределах данного участка . В инбредных

родословных с аутосомно-рецессивным заболеванием при наличии предположения об «эффекте основателя» исключительно продуктивным зарекомендовал себя метод гомозиготного картирования: он заключается в анализе «го- мозиготности по происхождению» {«homozygosUy-by- descent») и позволяет оценить степень гомозиготлости больных лиц по серии маркеров как результат наследования от единого предка общего хромосомного участка, включающего мутантный ген . Многообещающим является метод «экономного сканирования генома», предполагающий преимущественное использование маркеров, локализованных в «стратегических» CG насыщенных хромосомных областях, богатых экспрессирующимися последовательностями . Предложен также целый ряд других модификаций классического linkage-анализа .
Важно подчеркнуть, что анализ сцепления сохранит свое значение и после идентификации всего генома человека . Например, при изучении все еще достаточно большой группы наследственных заболеваний с неустановленными генами первым шагом на пути к выяснению молекулярного дефекта может служить /ш/ш^е-апализ и определение хромосомного локуса болезни, с последующим скринингом подходящих генов в данной области. Чрезвычайно важной в успехе генетического картирования является роль клинициста. Она заключается в адекватном отборе репрезентативных семей, детальной оценке клинического статуса всех включенных в исследование членов семьи, точной диагностике болезни и оценке характера сегрегации мутантного гена, а также в решении многих других ключевых вопросов.